Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 77(4): 1516-1524, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27080068

RESUMO

PURPOSE: To evaluate the accuracy and reproducibility of quantitative chemical shift-encoded (CSE) MRI to quantify proton-density fat-fraction (PDFF) in a fat-water phantom across sites, vendors, field strengths, and protocols. METHODS: Six sites (Philips, Siemens, and GE Healthcare) participated in this study. A phantom containing multiple vials with various oil/water suspensions (PDFF:0%-100%) was built, shipped to each site, and scanned at 1.5T and 3T using two CSE protocols per field strength. Confounder-corrected PDFF maps were reconstructed using a common algorithm. To assess accuracy, PDFF bias and linear regression with the known PDFF were calculated. To assess reproducibility, measurements were compared across sites, vendors, field strengths, and protocols using analysis of covariance (ANCOVA), Bland-Altman analysis, and the intraclass correlation coefficient (ICC). RESULTS: PDFF measurements revealed an overall absolute bias (across sites, field strengths, and protocols) of 0.22% (95% confidence interval, 0.07%-0.38%) and R2 > 0.995 relative to the known PDFF at each site, field strength, and protocol, with a slope between 0.96 and 1.02 and an intercept between -0.56% and 1.13%. ANCOVA did not reveal effects of field strength (P = 0.36) or protocol (P = 0.19). There was a significant effect of vendor (F = 25.13, P = 1.07 × 10-10 ) with a bias of -0.37% (Philips) and -1.22% (Siemens) relative to GE Healthcare. The overall ICC was 0.999. CONCLUSION: CSE-based fat quantification is accurate and reproducible across sites, vendors, field strengths, and protocols. Magn Reson Med 77:1516-1524, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Água Corporal/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Desenho de Equipamento , Análise de Falha de Equipamento , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Magn Reson Imaging ; 29(7): 966-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21641745

RESUMO

The loss of pulmonary artery (PA) compliance has significant pathophysiological effect on the right ventricle. Noninvasive and reliable assessment of PA wall stiffness would be an essential determiner of right heart load and a clinically useful factor to assess cardiovascular risk. Two MRI techniques have been proposed for assessing PA stiffness by measuring pulse wave velocity (PWV): transit time (TT) and flow area (QA). However, no data are available that compares the two techniques and evaluates their performance, especially over a wide range of PWV values or at 3.0-T, which is the purpose of the present study. Thirty-three patients with different heart conditions were imaged using optimized high-temporal resolution and high-spatial resolution velocity-encoding MRI sequences. Statistical analysis was conducted to study intermethod, interobserver and intraobserver variabilities. The PWV measurements using TT and QA techniques showed good agreement (P>0.1). The Bland-Altman analysis showed negligible differences between the two methods (mean±S.D.=0.11±0.35 m/s, correlation coefficient r=0.94). The repeated measurements showed low interobserver and intraobserver variabilities, although the S.D. of the differences was larger in the QA technique. The mean±S.D. of the TT/QA measurement differences were -0.05±0.2/0.0±0.36 m/s and 0.02±0.26/0.02±0.39 m/s for the interobserver and intraobserver differences, respectively. In conclusion, each technique has its own advantages and disadvantages. The two techniques result in similar measurements, although the QA method is more subjective due to its dependency on operator intervention.


Assuntos
Coração/fisiologia , Pneumopatias/patologia , Imageamento por Ressonância Magnética/métodos , Artéria Pulmonar/patologia , Rigidez Vascular , Adulto , Idoso , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pneumopatias/diagnóstico , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Fluxo Pulsátil , Reprodutibilidade dos Testes , Fatores de Tempo
3.
J Cardiovasc Magn Reson ; 12: 26, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20459799

RESUMO

BACKGROUND: The assessment of arterial stiffness is increasingly used for evaluating patients with different cardiovascular diseases as the mechanical properties of major arteries are often altered. Aortic stiffness can be noninvasively estimated by measuring pulse wave velocity (PWV). Several methods have been proposed for measuring PWV using velocity-encoded cardiovascular magnetic resonance (CMR), including transit-time (TT), flow-area (QA), and cross-correlation (XC) methods. However, assessment and comparison of these techniques at high field strength has not yet been performed. In this work, the TT, QA, and XC techniques were clinically tested at 3 Tesla and compared to each other. METHODS: Fifty cardiovascular patients and six volunteers were scanned to acquire the necessary images. The six volunteer scans were performed twice to test inter-scan reproducibility. Patient images were analyzed using the TT, XC, and QA methods to determine PWV. Two observers analyzed the images to determine inter-observer and intra-observer variabilities. The PWV measurements by the three methods were compared to each other to test inter-method variability. To illustrate the importance of PWV using CMR, the degree of aortic stiffness was assessed using PWV and related to LV dysfunction in five patients with diastolic heart failure patients and five matched volunteers. RESULTS: The inter-observer and intra-observer variability results showed no bias between the different techniques. The TT and XC results were more reproducible than the QA; the mean (SD) inter-observer/intra-observer PWV differences were -0.12(1.3)/-0.04(0.4) for TT, 0.2(1.3)/0.09(0.9) for XC, and 0.6(1.6)/0.2(1.4) m/s for QA methods, respectively. The correlation coefficients (r) for the inter-observer/intra-observer comparisons were 0.94/0.99, 0.88/0.94, and 0.83/0.92 for the TT, XC, and QA methods, respectively. The inter-scan reproducibility results showed low variability between the repeated scans (mean (SD) PWV difference = -0.02(0.4) m/s and r = 0.96). The inter-method variability results showed strong correlation between the TT and XC measurements, but less correlation with QA: r = 0.95, 0.87, and 0.89, and mean (SD) PWV differences = -0.12(1.0), 0.8(1.7), and 0.65(1.6) m/s for TT-XC, TT-QA, and XC-QA, respectively. Finally, in the group of diastolic heart failure patient, PWV was significantly higher (6.3 +/- 1.9 m/s) than in volunteers (3.5 +/- 1.4 m/s), and the degree of LV diastolic dysfunction showed good correlation with aortic PWV. CONCLUSIONS: In conclusion, while each of the studied methods has its own advantages and disadvantages, at high field strength, the TT and XC methods result in closer and more reproducible aortic PWV measurements, and the associated image processing requires less user interaction, than in the QA method. The choice of the analysis technique depends on the vessel segment geometry and available image quality.


Assuntos
Aorta/fisiopatologia , Cardiopatias/diagnóstico , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética/métodos , Fluxo Pulsátil , Adulto , Idoso , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Complacência (Medida de Distensibilidade) , Feminino , Cardiopatias/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA