Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Neural Syst ; 34(7): 2450029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38576308

RESUMO

Artificial intelligence (AI)-based approaches are crucial in computer-aided diagnosis (CAD) for various medical applications. Their ability to quickly and accurately learn from complex data is remarkable. Deep learning (DL) models have shown promising results in accurately classifying Alzheimer's disease (AD) and its related cognitive states, Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI), along with the healthy conditions known as Cognitively Normal (CN). This offers valuable insights into disease progression and diagnosis. However, certain traditional machine learning (ML) classifiers perform equally well or even better than DL models, requiring less training data. This is particularly valuable in CAD in situations with limited labeled datasets. In this paper, we propose an ensemble classifier based on ML models for magnetic resonance imaging (MRI) data, which achieved an impressive accuracy of 96.52%. This represents a 3-5% improvement over the best individual classifier. We evaluated popular ML classifiers for AD classification under both data-scarce and data-rich conditions using the Alzheimer's Disease Neuroimaging Initiative and Open Access Series of Imaging Studies datasets. By comparing the results to state-of-the-art CNN-centric DL algorithms, we gain insights into the strengths and weaknesses of each approach. This work will help users to select the most suitable algorithm for AD classification based on data availability.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/classificação , Humanos , Imageamento por Ressonância Magnética/métodos , Diagnóstico por Computador/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/classificação , Neuroimagem/métodos , Redes Neurais de Computação , Algoritmos
2.
Brain Inform ; 11(1): 10, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578524

RESUMO

Explainable artificial intelligence (XAI) has gained much interest in recent years for its ability to explain the complex decision-making process of machine learning (ML) and deep learning (DL) models. The Local Interpretable Model-agnostic Explanations (LIME) and Shaply Additive exPlanation (SHAP) frameworks have grown as popular interpretive tools for ML and DL models. This article provides a systematic review of the application of LIME and SHAP in interpreting the detection of Alzheimer's disease (AD). Adhering to PRISMA and Kitchenham's guidelines, we identified 23 relevant articles and investigated these frameworks' prospective capabilities, benefits, and challenges in depth. The results emphasise XAI's crucial role in strengthening the trustworthiness of AI-based AD predictions. This review aims to provide fundamental capabilities of LIME and SHAP XAI frameworks in enhancing fidelity within clinical decision support systems for AD prognosis.

3.
Brain Inform ; 10(1): 5, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806042

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Siamese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzheimer's disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA