Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Assist Reprod Genet ; 40(2): 301-308, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640251

RESUMO

PURPOSE: To determine if creating voting ensembles combining convolutional neural networks (CNN), support vector machine (SVM), and multi-layer neural networks (NN) alongside clinical parameters improves the accuracy of artificial intelligence (AI) as a non-invasive method for predicting aneuploidy. METHODS: A cohort of 699 day 5 PGT-A tested blastocysts was used to train, validate, and test a CNN to classify embryos as euploid/aneuploid. All embryos were analyzed using a modified FAST-SeqS next-generation sequencing method. Patient characteristics such as maternal age, AMH level, paternal sperm quality, and total number of normally fertilized (2PN) embryos were processed using SVM and NN. To improve model performance, we created voting ensembles using CNN, SVM, and NN to combine our imaging data with clinical parameter variations. Statistical significance was evaluated with a one-sample t-test with 2 degrees of freedom. RESULTS: When assessing blastocyst images alone, the CNN test accuracy was 61.2% (± 1.32% SEM, n = 3 models) in correctly classifying euploid/aneuploid embryos (n = 140 embryos). When the best CNN model was assessed as a voting ensemble, the test accuracy improved to 65.0% (AMH; p = 0.1), 66.4% (maternal age; p = 0.06), 65.7% (maternal age, AMH; p = 0.08), 66.4% (maternal age, AMH, number of 2PNs; p = 0.06), and 71.4% (maternal age, AMH, number of 2PNs, sperm quality; p = 0.02) (n = 140 embryos). CONCLUSIONS: By combining CNNs with patient characteristics, voting ensembles can be created to improve the accuracy of classifying embryos as euploid/aneuploid from CNN alone, allowing for AI to serve as a potential non-invasive method to aid in karyotype screening and selection of embryos.


Assuntos
Testes Genéticos , Diagnóstico Pré-Implantação , Gravidez , Feminino , Masculino , Humanos , Testes Genéticos/métodos , Diagnóstico Pré-Implantação/métodos , Inteligência Artificial , Sêmen , Ploidias , Aneuploidia , Blastocisto , Redes Neurais de Computação , Estudos Retrospectivos
2.
J Assist Reprod Genet ; 40(2): 251-257, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586006

RESUMO

PURPOSE: To determine if deep learning artificial intelligence algorithms can be used to accurately identify key morphologic landmarks on oocytes and cleavage stage embryo images for micromanipulation procedures such as intracytoplasmic sperm injection (ICSI) or assisted hatching (AH). METHODS: Two convolutional neural network (CNN) models were trained, validated, and tested over three replicates to identify key morphologic landmarks used to guide embryologists when performing micromanipulation procedures. The first model (CNN-ICSI) was trained (n = 13,992), validated (n = 1920), and tested (n = 3900) to identify the optimal location for ICSI through polar body identification. The second model (CNN-AH) was trained (n = 13,908), validated (n = 1908), and tested (n = 3888) to identify the optimal location for AH on the zona pellucida that maximizes distance from healthy blastomeres. RESULTS: The CNN-ICSI model accurately identified the polar body and corresponding optimal ICSI location with 98.9% accuracy (95% CI 98.5-99.2%) with a receiver operator characteristic (ROC) with micro and macro area under the curves (AUC) of 1. The CNN-AH model accurately identified the optimal AH location with 99.41% accuracy (95% CI 99.11-99.62%) with a ROC with micro and macro AUCs of 1. CONCLUSION: Deep CNN models demonstrate powerful potential in accurately identifying key landmarks on oocytes and cleavage stage embryos for micromanipulation. These findings are novel, essential stepping stones in the automation of micromanipulation procedures.


Assuntos
Inteligência Artificial , Fertilização in vitro , Masculino , Animais , Fertilização in vitro/métodos , Sêmen , Micromanipulação , Redes Neurais de Computação
3.
J Assist Reprod Genet ; 40(2): 241-249, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36374394

RESUMO

PURPOSE: Deep learning neural networks have been used to predict the developmental fate and implantation potential of embryos with high accuracy. Such networks have been used as an assistive quality assurance (QA) tool to identify perturbations in the embryo culture environment which may impact clinical outcomes. The present study aimed to evaluate the utility of an AI-QA tool to consistently monitor ART staff performance (MD and embryologist) in embryo transfer (ET), embryo vitrification (EV), embryo warming (EW), and trophectoderm biopsy (TBx). METHODS: Pregnancy outcomes from groups of 20 consecutive elective single day 5 blastocyst transfers were evaluated for the following procedures: MD performed ET (N = 160 transfers), embryologist performed ET (N = 160 transfers), embryologist performed EV (N = 160 vitrification procedures), embryologist performed EW (N = 160 warming procedures), and embryologist performed TBx (N = 120 biopsies). AI-generated implantation probabilities for the same embryo cohorts were estimated, as were mean AI-predicted and actual implantation rates for each provider and compared using Wilcoxon singed-rank test. RESULTS: Actual implantation rates following ET performed by one MD provider: "H" was significantly lower than AI-predicted (20% vs. 61%, p = 0.001). Similar results were observed for one embryologist, "H" (30% vs. 60%, p = 0.011). Embryos thawed by embryologist "H" had lower implantation rates compared to AI prediction (25% vs. 60%, p = 0.004). There were no significant differences between actual and AI-predicted implantation rates for EV, TBx, or for the rest of the clinical staff performing ET or EW. CONCLUSIONS: AI-based QA tools could provide accurate, reproducible, and efficient staff performance monitoring in an ART practice.


Assuntos
Inteligência Artificial , Criopreservação , Gravidez , Feminino , Humanos , Criopreservação/métodos , Blastocisto , Implantação do Embrião , Técnicas de Reprodução Assistida , Taxa de Gravidez , Estudos Retrospectivos
4.
Lab Chip ; 22(23): 4531-4540, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36331061

RESUMO

Deep learning-enabled smartphone-based image processing has significant advantages in the development of point-of-care diagnostics. Conventionally, most deep-learning applications require task specific large scale expertly annotated datasets. Therefore, these algorithms are oftentimes limited only to applications that have large retrospective datasets available for network development. Here, we report the possibility of utilizing adversarial neural networks to overcome this challenge by expanding the utility of non-specific data for the development of deep learning models. As a clinical model, we report the detection of fentanyl, a small molecular weight drug that is a type of opioid, at the point-of-care using a deep-learning empowered smartphone assay. We used the catalytic property of platinum nanoparticles (PtNPs) in a smartphone-enabled microchip bubbling assay to achieve high analytical sensitivity (detecting fentanyl at concentrations as low as 0.23 ng mL-1 in phosphate buffered saline (PBS), 0.43 ng mL-1 in human serum and 0.64 ng mL-1 in artificial human urine). Image-based inferences were made by our adversarial-based SPyDERMAN network that was developed using a limited dataset of 104 smartphone images of microchips with bubble signals from tests performed with known fentanyl concentrations and using our retrospective library of 17 573 non-specific bubbling-microchip images. The accuracy (± standard error of mean) of the developed system in determining the presence of fentanyl, when using a cutoff concentration of 1 ng mL-1, was 93 ± 0% in human serum (n = 100) and 95.3 ± 1.5% in artificial human urine (n = 100).


Assuntos
Aprendizado Profundo , Nanopartículas Metálicas , Humanos , Fentanila , Estudos Retrospectivos , Platina , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
5.
Transl Anim Sci ; 6(4): txac119, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36263416

RESUMO

Assessment of swine semen quality is important as it is used as an estimate of the fertility of an ejaculate. There are many methods to measure sperm morphology, concentration, and motility, however, some methods require expensive instrumentation or are not easy to use on-farm. A portable, low-cost, automated device could provide the potential to assess semen quality in field conditions. The objective of this study was to validate the use of Fertile-Eyez (FE), a smartphone-based device, to measure sperm concentration, total motility, and morphology in boar ejaculates. Semen from six sexually mature boars were collected and mixed to create a total of 18 unique semen samples for system evaluations. Each sample was then diluted to 1:4, 1:8, 1:10, and 1:16 (for concentration only) with Androhep Plus semen extender (n = 82 total). Sperm concentration was evaluated using FE and compared to results measured using a Nucleocounter and computer assisted sperm analysis (CASA: Ceros II, Hamilton Thorne). Sperm motility was evaluated using FE and CASA. Sperm morphological assessments were evaluated by a single technician manually counting abnormalities and compared to FE deep-learning technology. Data were analyzed using both descriptive statistics (mean, standard deviation, intra-assay coefficient of variance, and residual standard deviation [RSD]) and statistical tests (correlation analysis between devices and Bland-Altman methods). Concentration analysis was strongly correlated (n = 18; r > 0.967; P < 0.0001) among all devices and dilutions. Analysis of motility showed moderate correlation and was significant when all dilutions are analyzed together (n = 54; r = 0.558; P < 0.001). The regression analysis for motility also showed the RSD as 3.95% between FE and CASA indicating a tight fit between devices. This RSD indicates that FE can find boars with unacceptable motility (boars for example with less than 70%) which impact fertility and litter size. The Bland-Altman analysis showed that FE-estimated morphological assessment and the conventionally estimated morphological score were similar, with a mean difference of ~1% (%95 Limits of Agreement: -6.2 to 8.1; n = 17). The results of this experiment demonstrate that FE, a portable and automated smartphone-based device, is capable of assessing concentration, motility, and morphology of boar semen samples.

6.
J Assist Reprod Genet ; 39(10): 2343-2348, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35962845

RESUMO

PURPOSE: To determine whether convolutional neural networks (CNN) can be used to accurately ascertain the patient identity (ID) of cleavage and blastocyst stage embryos based on image data alone. METHODS: A CNN model was trained and validated over three replicates on a retrospective cohort of 4889 time-lapse embryo images. The algorithm processed embryo images for each patient and produced a unique identification key that was associated with the patient ID at a timepoint on day 3 (~ 65 hours post-insemination (hpi)) and day 5 (~ 105 hpi) forming our data library. When the algorithm evaluated embryos at a later timepoint on day 3 (~ 70 hpi) and day 5 (~ 110 hpi), it generates another key that was matched with the patient's unique key available in the library. This approach was tested using 400 patient embryo cohorts on day 3 and day 5 and number of correct embryo identifications with the CNN algorithm was measured. RESULTS: CNN technology matched the patient identification within random pools of 8 patient embryo cohorts on day 3 with 100% accuracy (n = 400 patients; 3 replicates). For day 5 embryo cohorts, the accuracy within random pools of 8 patients was 100% (n = 400 patients; 3 replicates). CONCLUSIONS: This study describes an artificial intelligence-based approach for embryo identification. This technology offers a robust witnessing step based on unique morphological features of each embryo. This technology can be integrated with existing imaging systems and laboratory protocols to improve specimen tracking.


Assuntos
Inteligência Artificial , Blastocisto , Humanos , Estudos Retrospectivos , Embrião de Mamíferos , Redes Neurais de Computação
7.
Nano Today ; 472022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37034382

RESUMO

Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.

8.
Adv Mater Technol ; 6(12): 2100602, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34514084

RESUMO

CRISPR (Clustered regularly interspaced short palindromic repeats)-based diagnostic technologies have emerged as a promising alternative to accelerate delivery of SARS-CoV-2 molecular detection at the point of need. However, efficient translation of CRISPR-diagnostic technologies to field application is still hampered by dependence on target amplification and by reliance on fluorescence-based results readout. Herein, an amplification-free CRISPR/Cas12a-based diagnostic technology for SARS-CoV-2 RNA detection is presented using a smartphone camera for results readout. This method, termed Cellphone-based amplification-free system with CRISPR/CAS-dependent enzymatic (CASCADE) assay, relies on mobile phone imaging of a catalase-generated gas bubble signal within a microfluidic channel and does not require any external hardware optical attachments. Upon specific detection of a SARS-CoV-2 reverse-transcribed DNA/RNA heteroduplex target (orf1ab) by the ribonucleoprotein complex, the transcleavage collateral activity of the Cas12a protein on a Catalase:ssDNA probe triggers the bubble signal on the system. High analytical sensitivity in signal detection without previous target amplification (down to 50 copies µL-1) is observed in spiked samples, in ≈71 min from sample input to results readout. With the aid of a smartphone vision tool, high accuracy (AUC = 1.0; CI: 0.715 - 1.00) is achieved when the CASCADE system is tested with nasopharyngeal swab samples of PCR-positive COVID-19 patients.

9.
Nat Biomed Eng ; 5(6): 571-585, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34112997

RESUMO

In machine learning for image-based medical diagnostics, supervised convolutional neural networks are typically trained with large and expertly annotated datasets obtained using high-resolution imaging systems. Moreover, the network's performance can degrade substantially when applied to a dataset with a different distribution. Here, we show that adversarial learning can be used to develop high-performing networks trained on unannotated medical images of varying image quality. Specifically, we used low-quality images acquired using inexpensive portable optical systems to train networks for the evaluation of human embryos, the quantification of human sperm morphology and the diagnosis of malarial infections in the blood, and show that the networks performed well across different data distributions. We also show that adversarial learning can be used with unlabelled data from unseen domain-shifted datasets to adapt pretrained supervised networks to new distributions, even when data from the original distribution are not available. Adaptive adversarial networks may expand the use of validated neural-network models for the evaluation of data collected from multiple imaging systems of varying quality without compromising the knowledge stored in the network.


Assuntos
Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Malária Falciparum/diagnóstico por imagem , Redes Neurais de Computação , Espermatozoides/ultraestrutura , Aprendizado de Máquina Supervisionado , Conjuntos de Dados como Assunto , Embrião de Mamíferos/diagnóstico por imagem , Embrião de Mamíferos/ultraestrutura , Feminino , Histocitoquímica/métodos , Humanos , Malária Falciparum/parasitologia , Masculino , Microscopia/métodos , Plasmodium falciparum/ultraestrutura , Imagem com Lapso de Tempo/métodos , Imagem com Lapso de Tempo/estatística & dados numéricos
11.
J Assist Reprod Genet ; 38(7): 1641-1646, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33904010

RESUMO

Staff competency is a crucial component of the in vitro fertilization (IVF) laboratory quality management system because it impacts clinical outcomes and informs the key performance indicators (KPIs) used to continuously monitor and assess culture conditions. Contemporary quality control and assurance in the IVF lab can be automated (collect, store, retrieve, and analyze), to elevate quality control and assurance beyond the cursory monthly review. Here we demonstrate that statistical KPI monitoring systems for individual embryologist performance and culture conditions can be detected by artificial intelligence systems to provide systemic, early detection of adverse outcomes, and identify clinically relevant shifts in pregnancy rates, providing critical validation for two statistical process controls proposed in the Vienna Consensus Document; intracytoplasmic sperm injection (ICSI) fertilization rate and day 3 embryo quality.


Assuntos
Aprendizado Profundo , Escore de Alerta Precoce , Técnicas de Cultura Embrionária/métodos , Pessoal de Laboratório , Injeções de Esperma Intracitoplásmicas/métodos , Blastocisto/citologia , Blastocisto/fisiologia , Desenvolvimento Embrionário , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pessoal de Laboratório/normas , Redes Neurais de Computação , Gravidez , Taxa de Gravidez
12.
Heliyon ; 7(2): e06298, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33665450

RESUMO

A critical factor that influences the success of an in-vitro fertilization (IVF) treatment cycle is the quality of the transferred embryo. Embryo morphology assessments, conventionally performed through manual microscopic analysis suffer from disparities in practice, selection criteria, and subjectivity due to the experience of the embryologist. Convolutional neural networks (CNNs) are powerful, promising algorithms with significant potential for accurate classifications across many object categories. Network architectures and hyper-parameters affect the efficiency of CNNs for any given task. Here, we evaluate multi-layered CNNs developed from scratch and popular deep-learning architectures such as Inception v3, ResNET-50, Inception-ResNET-v2, NASNetLarge, ResNeXt-101, ResNeXt-50, and Xception in differentiating between embryos based on their morphological quality at 113 h post insemination (hpi). Xception performed the best in differentiating between the embryos based on their morphological quality.

13.
Iran J Parasitol ; 16(1): 136-145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786055

RESUMO

BACKGROUND: The present study aimed to control mebendazole drug release from ethyl cellulose nanofibers containing guar gum produced by Electrospinning Method (ESM) on mortality of hydatid cyst protoscoleces under laboratory conditions. METHODS: The study was conducted in Arak Islamic Azad University, 2019. After preparation of ethyl cellulose nanofibers containing guar gum with concentrations 10, 250, 50 and 500 ppm with ESM, the uniformity and fineness of nanofibers were investigated by electron microscope. By determining the absorption of nanofibers during 312 h via spectrophotometry method, the amount of drug release was obtained. Then, the mortality of live protoscoleces in-vitro with nanofibers made with different concentrations was studied during 13 days. RESULTS: Guar gum nanofiber with four concentrations of 10, 50, 250 and 500 ppm had 0.78512, 0.83729, 1.0098 and 1.0633 absorption respectively and showed drug release 42.09%, 39.95%, 33.05% and 30.96% after 312 hours. Therefore, the survival of protoscoleces in the presence of guar gum with four concentrations was zero after 3, 6, 11 and 13 days (P<0.05). CONCLUSION: To produce nanofibers carrying the drug for research related to the treatment of hydatid cysts, the electrospinning technique can be considered as a reliable method.

14.
ACS Nano ; 15(1): 665-673, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33226787

RESUMO

Deep-learning (DL)-based image processing has potential to revolutionize the use of smartphones in mobile health (mHealth) diagnostics of infectious diseases. However, the high variability in cellphone image data acquisition and the common need for large amounts of specialist-annotated images for traditional DL model training may preclude generalizability of smartphone-based diagnostics. Here, we employed adversarial neural networks with conditioning to develop an easily reconfigurable virus diagnostic platform that leverages a dataset of smartphone-taken microfluidic chip photos to rapidly generate image classifiers for different target pathogens on-demand. Adversarial learning was also used to augment this real image dataset by generating 16,000 realistic synthetic microchip images, through style generative adversarial networks (StyleGAN). We used this platform, termed smartphone-based pathogen detection resource multiplier using adversarial networks (SPyDERMAN), to accurately detect different intact viruses in clinical samples and to detect viral nucleic acids through integration with CRISPR diagnostics. We evaluated the performance of the system in detecting five different virus targets using 179 patient samples. The generalizability of the system was confirmed by rapid reconfiguration to detect SARS-CoV-2 antigens in nasal swab samples (n = 62) with 100% accuracy. Overall, the SPyDERMAN system may contribute to epidemic preparedness strategies by providing a platform for smartphone-based diagnostics that can be adapted to a given emerging viral agent within days of work.


Assuntos
Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , COVID-19/diagnóstico , Aprendizado Profundo , Processamento de Sinais Assistido por Computador , Telemedicina/métodos , Antígenos Virais/isolamento & purificação , Sistemas CRISPR-Cas , Controle de Doenças Transmissíveis , Planejamento em Desastres , Humanos , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas Metálicas/química , Redes Neurais de Computação , Platina , Testes Imediatos , Saúde Pública , Reprodutibilidade dos Testes , Smartphone
15.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328239

RESUMO

Emerging and reemerging infections present an ever-increasing challenge to global health. Here, we report a nanoparticle-enabled smartphone (NES) system for rapid and sensitive virus detection. The virus is captured on a microchip and labeled with specifically designed platinum nanoprobes to induce gas bubble formation in the presence of hydrogen peroxide. The formed bubbles are controlled to make distinct visual patterns, allowing simple and sensitive virus detection using a convolutional neural network (CNN)-enabled smartphone system and without using any optical hardware smartphone attachment. We evaluated the developed CNN-NES for testing viruses such as hepatitis B virus (HBV), HCV, and Zika virus (ZIKV). The CNN-NES was tested with 134 ZIKV- and HBV-spiked and ZIKV- and HCV-infected patient plasma/serum samples. The sensitivity of the system in qualitatively detecting viral-infected samples with a clinically relevant virus concentration threshold of 250 copies/ml was 98.97% with a confidence interval of 94.39 to 99.97%.

16.
Fertil Steril ; 114(5): 934-940, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33160516

RESUMO

Artificial intelligence (AI) systems have been proposed for reproductive medicine since 1997. Although AI is the main driver of emergent technologies in reproduction, such as robotics, Big Data, and internet of things, it will continue to be the engine for technological innovation for the foreseeable future. What does the future of AI research look like?


Assuntos
Inteligência Artificial/tendências , Pesquisa Biomédica/tendências , Fertilização in vitro/tendências , Medicina Reprodutiva/tendências , Animais , Pesquisa Biomédica/métodos , Fertilização in vitro/métodos , Previsões , Humanos , Aprendizado de Máquina/tendências , Medicina Reprodutiva/métodos
17.
Elife ; 92020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930094

RESUMO

Deep learning in in vitro fertilization is currently being evaluated in the development of assistive tools for the determination of transfer order and implantation potential using time-lapse data collected through expensive imaging hardware. Assistive tools and algorithms that can work with static images, however, can help in improving the access to care by enabling their use with images acquired from traditional microscopes that are available to virtually all fertility centers. Here, we evaluated the use of a deep convolutional neural network (CNN), trained using single timepoint images of embryos collected at 113 hr post-insemination, in embryo selection amongst 97 clinical patient cohorts (742 embryos) and observed an accuracy of 90% in choosing the highest quality embryo available. Furthermore, a CNN trained to assess an embryo's implantation potential directly using a set of 97 euploid embryos capable of implantation outperformed 15 trained embryologists (75.26% vs. 67.35%, p<0.0001) from five different fertility centers.


Around one in seven couples have trouble conceiving, which means there is a high demand for solutions such as in vitro fertilization, also known as IVF. This process involves fertilizing and developing embryos in the laboratory and then selecting a few to implant into the womb of the patient. IVF, however, only has a 30% success rate, is expensive and can be both mentally and physically taxing for patients. Selecting the right embryos to implant is therefore extremely important, as this increases the chance of success, minimizes complications and ensures the baby will be healthy. Currently the tools available for making this decision are limited, highly subjective, time-consuming, and often extremely expensive. As a result, embryologists often rely on their experience and observational skills when choosing which embryos to implant, which can lead to a lot of variability. An automated system based on artificial intelligence (AI) could therefore improve IVF success rates by assisting embryologists with this decision and ensuring more consistent results. The AI system could learn how embryos develop over time and then uses this information to select the best embryos to implant from just a single image. This would offer a cheaper alternative to current analysis tools that are only available at the most expensive IVF clinics. Now, Bormann, Kanakasabapathy, Thirumalaraj et al. have developed an AI system for IVF based on thousands of images of embryos. Using individual images, the system selected embryos of a comparable quality to those selected by a human specialist. It also showed a greater ability to identify embryos that will lead to successful implantation. Indeed, the software outperformed 15 embryologists from five different centers across the United States in detecting which embryos were most likely to implant out of a group of high-quality embryos with few visible differences. Artificial intelligence has many potential applications to support expert clinical decision-making. Systems like these could improve success, reduce errors and lead to faster, cheaper and more accessible results. Beyond immediate IVF applications, this system could also be used in research and industry to help understand differences in embryo quality.


Assuntos
Blastocisto/classificação , Aprendizado Profundo , Fertilização in vitro/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Blastocisto/citologia , Blastocisto/fisiologia , Feminino , Humanos , Masculino , Microscopia , Gravidez , Resultado da Gravidez
18.
Fertil Steril ; 113(4): 781-787.e1, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32228880

RESUMO

OBJECTIVE: To evaluate the consistency and objectivity of deep neural networks in embryo scoring and making disposition decisions for biopsy and cryopreservation in comparison to grading by highly trained embryologists. DESIGN: Prospective double-blind study using retrospective data. SETTING: U.S.-based large academic fertility center. PATIENTS: Not applicable. INTERVENTION(S): Embryo images (748 recorded at 70 hours postinsemination [hpi]) and 742 at 113 hpi) were used to evaluate embryologists and neural networks in embryo grading. The performance of 10 embryologists and a neural network were also evaluated in disposition decision making using 56 embryos. MAIN OUTCOME MEASURES: Coefficients of variation (%CV) and measures of consistencies were compared. RESULTS: Embryologists exhibited a high degree of variability (%CV averages: 82.84% for 70 hpi and 44.98% for 113 hpi) in grading embryo. When selecting blastocysts for biopsy or cryopreservation, embryologists had an average consistency of 52.14% and 57.68%, respectively. The neural network outperformed the embryologists in selecting blastocysts for biopsy and cryopreservation with a consistency of 83.92%. Cronbach's α analysis revealed an α coefficient of 0.60 for the embryologists and 1.00 for the network. CONCLUSIONS: The results of our study show a high degree of interembryologist and intraembryologist variability in scoring embryos, likely due to the subjective nature of traditional morphology grading. This may ultimately lead to less precise disposition decisions and discarding of viable embryos. The application of a deep neural network, as shown in our study, can introduce improved reliability and high consistency during the process of embryo selection and disposition, potentially improving outcomes in an embryology laboratory.


Assuntos
Aprendizado Profundo , Embrião de Mamíferos/diagnóstico por imagem , Embriologia/métodos , Redes Neurais de Computação , Aprendizado Profundo/tendências , Método Duplo-Cego , Embrião de Mamíferos/embriologia , Embriologia/tendências , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Imagem com Lapso de Tempo/métodos , Imagem com Lapso de Tempo/tendências
19.
IEEE Open J Eng Med Biol ; 1: 243-248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34192282

RESUMO

Goal: The aim of the study herein reported was to review mobile health (mHealth) technologies and explore their use to monitor and mitigate the effects of the COVID-19 pandemic. Methods: A Task Force was assembled by recruiting individuals with expertise in electronic Patient-Reported Outcomes (ePRO), wearable sensors, and digital contact tracing technologies. Its members collected and discussed available information and summarized it in a series of reports. Results: The Task Force identified technologies that could be deployed in response to the COVID-19 pandemic and would likely be suitable for future pandemics. Criteria for their evaluation were agreed upon and applied to these systems. Conclusions: mHealth technologies are viable options to monitor COVID-19 patients and be used to predict symptom escalation for earlier intervention. These technologies could also be utilized to monitor individuals who are presumed non-infected and enable prediction of exposure to SARS-CoV-2, thus facilitating the prioritization of diagnostic testing.

20.
Lab Chip ; 19(24): 4139-4145, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31755505

RESUMO

Embryo assessment and selection is a critical step in an in vitro fertilization (IVF) procedure. Current embryo assessment approaches such as manual microscopy analysis done by embryologists or semi-automated time-lapse imaging systems are highly subjective, time-consuming, or expensive. Availability of cost-effective and easy-to-use hardware and software for embryo image data acquisition and analysis can significantly empower embryologists towards more efficient clinical decisions both in resource-limited and resource-rich settings. Here, we report the development of two inexpensive (<$100 and <$5) and automated imaging platforms that utilize advances in artificial intelligence (AI) for rapid, reliable, and accurate evaluations of embryo morphological qualities. Using a layered learning approach, we have shown that network models pre-trained with high quality embryo image data can be re-trained using data recorded on such low-cost, portable optical systems for embryo assessment and classification when relatively low-resolution image data are used. Using two test sets of 272 and 319 embryo images recorded on the reported stand-alone and smartphone optical systems, we were able to classify embryos based on their cell morphology with >90% accuracy.


Assuntos
Blastocisto , Aprendizado Profundo , Desenvolvimento Embrionário , Processamento de Imagem Assistida por Computador , Imagem com Lapso de Tempo , Fertilização in vitro , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA