Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cancer Ther ; 19(7): 1486-1496, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32371589

RESUMO

Treatment response assessment for patients with advanced solid tumors is complex and existing methods require greater precision. Current guidelines rely on imaging, which has known limitations, including the time required to show a deterministic change in target lesions. Serial changes in whole-genome (WG) circulating tumor DNA (ctDNA) were used to assess response or resistance to treatment early in the treatment course. Ninety-six patients with advanced cancer were prospectively enrolled (91 analyzed and 5 excluded), and blood was collected before and after initiation of a new, systemic treatment. Plasma cell-free DNA libraries were prepared for either WG or WG bisulfite sequencing. Longitudinal changes in the fraction of ctDNA were quantified to retrospectively identify molecular progression (MP) or major molecular response (MMR). Study endpoints were concordance with first follow-up imaging (FFUI) and stratification of progression-free survival (PFS) and overall survival (OS). Patients with MP (n = 13) had significantly shorter PFS (median 62 days vs. 310 days) and OS (255 days vs. not reached). Sensitivity for MP to identify clinical progression was 54% and specificity was 100%. MP calls were from samples taken a median of 28 days into treatment and 39 days before FFUI. Patients with MMR (n = 27) had significantly longer PFS and OS compared with those with neither call (n = 51). These results demonstrated that ctDNA changes early after treatment initiation inform response to treatment and correlate with long-term clinical outcomes. Once validated, molecular response assessment can enable early treatment change minimizing side effects and costs associated with additional cycles of ineffective treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Genoma Humano , Mutação , Neoplasias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA Tumoral Circulante/análise , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
2.
Commun Biol ; 1: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271925

RESUMO

Despite improvements in the CRISPR molecular toolbox, identifying and purifying properly edited clones remains slow, laborious, and low-yield. Here, we establish a method to enable clonal isolation, selection, and expansion of properly edited cells, using OptoElectroPositioning technology for single-cell manipulation on a nanofluidic device. Briefly, after electroporation of primary T cells with CXCR4-targeting Cas9 ribonucleoproteins, single T cells are isolated on a chip and expanded into colonies. Phenotypic consequences of editing are rapidly assessed on-chip with cell-surface staining for CXCR4. Furthermore, individual colonies are identified based on their specific genotype. Each colony is split and sequentially exported for on-target sequencing and further off-chip clonal expansion of the validated clones. Using this method, single-clone editing efficiencies, including the rate of mono- and bi-allelic indels or precise nucleotide replacements, can be assessed within 10 days from Cas9 ribonucleoprotein introduction in cells.

3.
BMC Bioinformatics ; 10: 433, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20021670

RESUMO

BACKGROUND: The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. RESULTS: We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs) that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL). We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. CONCLUSIONS: The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.


Assuntos
Teorema de Bayes , Biologia Computacional/métodos , Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transdução de Sinais
4.
J Mach Learn Res ; 10: 159-162, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20161541

RESUMO

In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing.

5.
Nucleic Acids Res ; 31(13): 3775-81, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12824416

RESUMO

Onto-Tools is a set of four seamlessly integrated databases: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Onto-Express is able to automatically translate lists of genes found to be differentially regulated in a given condition into functional profiles characterizing the impact of the condition studied upon various biological processes and pathways. OE constructs functional profiles (using Gene Ontology terms) for the following categories: biochemical function, biological process, cellular role, cellular component, molecular function and chromosome location. Statistical significance values are calculated for each category. Once the initial exploratory analysis identified a number of relevant biological processes, specific mechanisms of interactions can be hypothesized for the conditions studied. Currently, many commercial arrays are available for the investigation of specific mechanisms. Each such array is characterized by a biological bias determined by the extent to which the genes present on the array represent specific pathways. Onto-Compare is a tool that allows efficient comparisons of any sets of commercial or custom arrays. Using Onto-Compare, a researcher can determine quickly which array, or set of arrays, covers best the hypotheses studied. In many situations, no commercial arrays are available for specific biological mechanisms. Onto-Design is a tool that allows the user to select genes that represent given functional categories. Onto-Translate allows the user to translate easily lists of accession numbers, UniGene clusters and Affymetrix probes into one another. All tools above are seamlessly integrated. The Onto-Tools are available online at http://vortex.cs.wayne.edu/Projects.html.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Bases de Dados de Ácidos Nucleicos , Internet , Proteínas/genética , Proteínas/fisiologia , Integração de Sistemas
6.
Biotechniques ; Suppl: 55-61, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12664686

RESUMO

Microarrays are at the center of a revolution in biotechnology, allowing researchers to screen tens of thousands of genes simultaneously. Typically, they have been used in exploratory research to help formulate hypotheses. In most cases, this phase is followed by a more focused, hypothesis-driven stage in which certain specific biological processes and pathways are thought to be involved. Since a single biological process can still involve hundreds of genes, microarrays are still the preferred approach as proven by the availability of focused arrays from several manufacturers. Because focused arrays from different manufacturers use different sets of genes, each array will represent any given regulatory pathway to a different extent. We argue that a functional analysis of the arrays available should be the most important criterion used in the array selection. We developed Onto-Compare as a database that can provide this functionality, based on the Gene Ontology Consortium nomenclature. We used this tool to compare several arrays focused on apoptosis, oncogenes, and tumor suppressors. We considered arrays from BD Biosciences Clontech, PerkinElmer, Sigma-Genosys, and SuperArray. We showed that among the oncogene arrays, the PerkinElmer MICROMAX oncogene microarray has a better representation of oncogenesis, protein phosphorylation, and negative control of cell proliferation. The comparison of the apoptosis arrays showed that most apoptosis-related biological processes are equally well represented on the arrays considered. However, functional categories such as immune response, cell-cell signaling, cell-surface receptor linked signal transduction, and interleukins are better represented on the Sigma-Genoys Panorama human apoptosis array. At the same time, processes such as cell cycle control, oncogenesis, and negative control of cell proliferation are better represented on the BD Biosciences Clontech Atlas Select human apoptosis array.


Assuntos
Bases de Dados de Ácidos Nucleicos , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Alinhamento de Sequência/métodos , Interface Usuário-Computador , Viés , Análise de Falha de Equipamento/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Avaliação da Tecnologia Biomédica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA