Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 8(1): 66, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454151

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains highly lethal due to limited therapeutic options and expensive/burdensome drug discovery processes. Utilizing genomic-data-driven Connectivity Mapping (CMAP) to identify a drug closer to real-world PC targeting may improve pancreatic cancer (PC) patient outcomes. Initially, we mapped CMAP data to gene expression from 106 PC patients, identifying nine negatively connected drugs. These drugs were further narrowed down using a similar analysis for PC cell lines, human tumoroids, and patient-derived xenografts datasets, where ISOX emerged as the most potent agent to target PC. We used human and mouse syngeneic PC cells, human and mouse tumoroids, and in vivo mice to assess the ability of ISOX alone and in combination with 5FU to inhibit tumor growth. Global transcriptomic and pathway analysis of the ISOX-LINCS signature identified HDAC 6/cMyc as the target axis for ISOX. Specifically, we discovered that genetic and pharmacological targeting of HDAC 6 affected non-histone protein cMyc acetylation, leading to cMyc instability, thereby disrupting PC growth and metastasis by affecting cancer stemness. Finally, KrasG12D harboring tumoroids and mice responded effectively against ISOX and 5FU treatment by enhancing survival and controlling metastasis incidence. Overall, our data validate ISOX as a new drug to treat advanced PC patients without toxicity to normal cells. Our study supports the clinical utility of ISOX along with 5FU in future PC clinical trials.

2.
NPJ Precis Oncol ; 7(1): 74, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567918

RESUMO

Aberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers. ch5E6 binds and interferes with MUC16-associated oncogenesis, suppresses the downstream signaling pFAK(Y397)/p-p70S6K(T389)/N-cadherin axis and exert antiproliferative effects in cancer cells, 3D organoids, and tumor xenografts of both PC and NSCLC. The robust clinical correlations observed between MUC16 and N-cadherin in patient tumors and metastatic samples imply ch5E6 potential in targeting a complex and significantly occurring phenomenon of epithelial to mesenchymal transition (EMT) associated with disease aggressiveness. Our study supports evaluating ch5E6 with standard-of-care drugs, to potentially augment treatment outcomes in malignancies inflicted with MUC16-associated poor prognosis.

3.
Clin Cancer Res ; 29(18): 3759-3770, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432996

RESUMO

PURPOSE: Despite the significant association of molecular subtypes with poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC), few efforts have been made to identify the underlying pathway(s) responsible for this prognosis. Identifying a clinically relevant prognosis-based gene signature may be the key to improving patient outcomes. EXPERIMENTAL DESIGN: We analyzed the transcriptomic profiles of treatment-naïve surgically resected short-term survivor (STS) and long-term survivor (LTS) tumors (GSE62452) for expression and survival, followed by validation in several datasets. These results were corroborated by IHC analysis of PDAC-resected STS and LTS tumors. The mechanism of this differential survival was investigated using CIBERSORT and pathway analyses. RESULTS: We identified a short-surviving prognostic subtype of PDAC with a high degree of significance (P = 0.018). One hundred thirty genes in this novel subtype were found to be regulated by a master regulator, homeobox gene HOXA10, and a 5-gene signature derived from these genes, including BANF1, EIF4G1, MRPS10, PDIA4, and TYMS, exhibited differential expression in STSs and a strong association with poor survival. This signature was further associated with the proportion of T cells and macrophages found in STSs and LTSs, demonstrating a potential role in PDAC immunosuppression. Pathway analyses corroborated these findings, revealing that this HOXA10-driven prognostic signature is associated with immune suppression and enhanced tumorigenesis. CONCLUSIONS: Overall, these findings reveal the presence of a HOXA10-associated prognostic subtype that can be used to differentiate between STS and LTS patients of PDAC and inform on the molecular interactions that play a role in this poor prognosis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Proteínas Homeobox A10/genética , Proteínas Homeobox A10/metabolismo
4.
Breast Cancer Res ; 25(1): 25, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918912

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is highly aggressive with an increased metastatic incidence compared to other breast cancer subtypes. However, due to the absence of clinically reliable biomarkers and targeted therapy in TNBC, outcomes are suboptimal. Hence, there is an urgent need to understand biological mechanisms that lead to identifying novel therapeutic targets for managing metastatic TNBC. METHODS: The clinical significance of MUC16 and ELAVL1 or Hu antigen R (HuR) was examined using breast cancer TCGA data. Microarray was performed on MUC16 knockdown and scramble TNBC cells and MUC16-associated genes were identified using RNA immunoprecipitation and metastatic cDNA array. Metastatic properties of MUC16 were evaluated using tail vein experiment. MUC16 and HuR downstream pathways were confirmed by ectopic overexpression of MUC16-carboxyl-terminal (MUC16-Cter), HuR and cMyc as well as HuR inhibitors (MS-444 and CMLD-2) in TNBC cells. RESULTS: MUC16 was highly expressed in TNBC and correlated with its target HuR. Depletion of MUC16 showed decreased invasion, migration, and colony formation abilities of human and mouse TNBC cells. Mice injected with MUC16 depleted cells were less likely to develop lung metastasis (P = 0.001). Notably, MUC16 and HuR were highly expressed in the lung tropic TNBC cells and lung metastases. Mechanistically, we identified cMyc as a HuR target in TNBC using RNA immunoprecipitation and metastatic cDNA array. Furthermore, MUC16 knockdown and pharmacological inhibition of HuR (MS-444 and CMLD-2) in TNBC cells showed a reduction in cMyc expression. MUC16-Cter or HuR overexpression models indicated MUC16/HuR/cMyc axis in TNBC cell migration. CONCLUSIONS: Our study identified MUC16 as a TNBC lung metastasis promoter that acts through HuR/cMyc axis. This study will form the basis of future studies to evaluate the targeting of both MUC16 and HuR in TNBC patients.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , RNA , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Antígeno Ca-125/genética , Antígeno Ca-125/metabolismo , Antígeno Ca-125/uso terapêutico , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
5.
Oncogene ; 41(48): 5147-5159, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271032

RESUMO

MUC16, membrane-bound mucin, plays an oncogenic role in pancreatic ductal adenocarcinoma (PDAC). However, the pathological role of MUC16 in the PDAC progression, tumor microenvironment, and metastasis in cooperation with KrasG12D and Trp53R172H mutations remains unknown. Deletion of Muc16 with activating mutations KrasG12D/+ and Trp53R172H/+ in mice significantly decreased progression and prolonged overall survival in KrasG12D/+; Trp53R172H/+; Pdx-1-Cre; Muc16-/- (KPCM) and KrasG12D/+; Pdx-1-Cre; Muc16-/- (KCM), as compared to KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) and KrasG12D/+; Pdx-1-Cre (KC) mice, respectively. Muc16 knockout pancreatic tumor (KPCM) displays decreased tumor microenvironment factors and significantly reduced incidence of liver and lung metastasis compared to KPC. Furthermore, in silico data analysis showed a positive correlation of MUC16 with activated stroma and metastasis-associated genes. KPCM mouse syngeneic cells had significantly lower metastatic and endothelial cell binding abilities than KPC cells. Similarly, KPCM organoids significantly decreased the growth rate compared to KPC organoids. Interestingly, RNA-seq data revealed that the cytoskeletal proteins Actg2, Myh11, and Pdlim3 were downregulated in KPCM tumors. Further knockdown of these genes showed reduced metastatic potential. Overall, our results demonstrate that Muc16 alters the tumor microenvironment factors during pancreatic cancer progression and metastasis by changing the expression of Actg2, Myh11, and Pdlim3 genes.


Assuntos
Carcinoma Ductal Pancreático , Mucinas , Neoplasias Pancreáticas , Animais , Camundongos , Carcinogênese , Carcinoma Ductal Pancreático/patologia , Mucinas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
6.
Cancer Lett ; 551: 215922, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36285687

RESUMO

Mucin MUC4 is an aberrantly expressed oncogene in pancreatic ductal adenocarcinoma (PDAC), yet no pharmacological inhibitors have been identified to target MUC4. Here, we adapted an in silico screening method using the Cancer Therapeutic Response Database (CTRD) to Identify Small Molecule Inhibitors against Mucins (SMIMs). We identified Bosutinib as a candidate drug to target oncogenic mucins among 126 FDA-approved drugs from CTRD screening. Functionally, Bosutinib treatment alone/and in combination with gemcitabine (Gem)/5' fluorouracil (5FU) reduced in vitro viability, migration, and colony formation in multiple PDAC cell lines as well as human PDAC organoid prolifertaion and growth and in vivo xenograft growth. Further, biochemical and molecular analyses showed that Bosutinib exhibited these functional effects by downregulating MUC4 mucin at both transcript and translation levels in a dose- and time-dependent manner. Mechanistically, global transcriptome analysis in PDAC cells upon treatment with Bosutinib revealed disruption of the Src-ERK/AKT-FosL1 pathway, leading to decreased expression of MUC4 and MUC5AC mucins. Taken together, Bosutinib is a promising, novel, and highly potent SMIMs to target MUC4/MUC5AC mucins. This mucin-targeting effect of Bosutinib can be exploited in the future with cytotoxic agents to treat mucinous tumors.

7.
Nanomedicine ; 43: 102566, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569810

RESUMO

The low specificity of prostate-specific antigen contributes to overdiagnosis and ov ertreatment of prostate cancer (PCa) patients. Hence, there is an urgent need for inclusive diagnostic platforms that could improve the diagnostic accuracy of PCa. Dysregulated miRNAs are closely associated with the progression and recurrence and have emerged as promising diagnostic and prognostic biomarkers for PCa. Nevertheless, simple, rapid, and ultrasensitive quantification of serum miRNAs is highly challenging. This study designed, synthesized, and demonstrated the practicability of DNA-linked gold nanoprobes (DNA-AuNPs) for the single-step quantification of miR-21/miR-141/miR-375. In preclinical study, the assay differented PCa Pten conditional knockout (PtencKO) mice compared to their age-matched Pten wild-type (PtenWT) control mice. In human sera, receiver operating characteristic (ROC) curve-based correlation analyses revealed clear discrimination between PCa patients from normal healthy controls using training and validation sets. Overall, we established integrated nano-biosensing technology for the PCR-free, non-invasive liquid biopsies of multiple miRNAs for PCa diagnosis.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Neoplasias da Próstata , Animais , Biomarcadores Tumorais/genética , Biópsia , DNA , Ouro , Humanos , Biópsia Líquida , Masculino , Camundongos , MicroRNAs/genética , Antígeno Prostático Específico/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Tecnologia
8.
Mol Cancer Res ; 20(8): 1208-1221, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533267

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer, as it commonly metastasizes to the liver resulting in an overall poor prognosis. However, the molecular mechanism involved in liver metastasis remains poorly understood. Here, we aimed to identify the MUC16-mediated molecular mechanism of PDAC-liver metastasis. Previous studies demonstrated that MUC16 and its C-terminal (Cter) domain are involved in the aggressiveness of PDAC. In this study, we observed MUC16 and its Cter expression significantly high in human PDAC tissues, PDAC organoids, and metastatic liver tissues, while no expression was observed in normal pancreatic tissues using IHC and immunofluorescence (IFC) analyses. MUC16 knockdown in SW1990 and CD18/HPAF PDAC cells significantly decreased the colony formation, migration, and endothelial/p-selectin binding. In contrast, MUC16-Cter ectopic overexpression showed significantly increased colony formation and motility in MiaPaCa2 pancreatic cancer cells. Interestingly, MUC16 promoted cell survival and colonization in the liver, mimicking an ex vivo environment. Furthermore, MUC16 enhanced liver metastasis in the in vivo mouse model. Our integrated analyses of RNA-sequencing suggested that MUC16 alters Neuropilin-2 (NRP2) and cell adhesion molecules in pancreatic cancer cells. Furthermore, we identified that MUC16 regulated NRP2 via JAK2/STAT1 signaling in PDAC. NRP2 knockdown in MUC16-overexpressed PDAC cells showed significantly decreased cell adhesion and migration. Overall, the findings indicate that MUC16 regulates NRP2 and induces metastasis in PDAC. IMPLICATIONS: This study shows that MUC16 plays a critical role in PDAC liver metastasis by mediating NRP2 regulation by JAK2/STAT1 axis, thereby paving the way for future therapy efforts for metastatic PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neuropilina-2 , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Animais , Antígeno Ca-125/metabolismo , Carcinoma Ductal Pancreático/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Proteínas de Membrana/metabolismo , Camundongos , Metástase Neoplásica , Neuropilina-2/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
9.
Semin Cancer Biol ; 86(Pt 2): 511-520, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35346803

RESUMO

Pancreatic cancer (PC) is exemplified by a complex immune-suppressive, fibrotic tumor microenvironment (TME), and aberrant expression of mucins. The constant crosstalk between cancer cells, cancer-associated fibroblasts (CAFs), and the immune cells mediated by the soluble factors and inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) promote the dynamic temporal switch towards an immune-escape phenotype in the neoplastic cells and its microenvironment that bolsters disease progression. Chemokines have been studied in PC pathogenesis, albeit poorly in the context of mucins, tumor glycocalyx, and TME heterogeneity (CAFs and immune cells). With correlative analysis from PC patients' transcriptome data, support from available literature, and scientific arguments-based speculative extrapolations in terms of disease pathogenesis, we have summarized in this review a comprehensive understanding of chemokine-mucinome interplay during stromal modulation and immune-suppression in PC. Future studies should focus on deciphering the complexities of chemokine-mediated control of glycocalyx maturation, immune infiltration, and CAF-associated immune suppression. Knowledge extracted from such studies will be beneficial to mechanistically correlate the mucin-chemokine abundance in serum versus pancreatic tumors of patients, which may aid in prognostication and stratification of PC patients for immunotherapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Pancreáticas/patologia , Quimiocinas/metabolismo , Mucinas/metabolismo , Neoplasias Pancreáticas
10.
Mol Cell Biol ; 41(12): e0013521, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34570619

RESUMO

RNA polymerase II-associated factor 1 (PAF1)/pancreatic differentiation 2 (PD2) is a core subunit of the human PAF1 complex (PAF1C) that regulates the RNA polymerase II function during transcriptional elongation. PAF1/PD2 has also been linked to the oncogenesis of pancreatic ductal adenocarcinoma (PDAC). Here, we report that PAF1/PD2 undergoes posttranslational modification (PTM) through SUMOylation, enhancing the radiation resistance of PDAC cells. We identified that PAF1/PD2 is preferentially modified by small ubiquitin-related modifier 1 (SUMO 1), and mutating the residues (K)-150 and 154 by site-directed mutagenesis reduces the SUMOylation. Interestingly, PAF1/PD2 was found to directly interact with the promyelocytic leukemia (PML) protein in response to radiation, and inhibition of PAF1/PD2 SUMOylation at K-150/154 affects its interaction with PML. Our results demonstrate that SUMOylation of PAF1/PD2 increased in the radiated pancreatic cancer cells. Furthermore, inhibition of SUMOylation or PML reduces the cell growth and proliferation of PDAC cells after radiation treatment. These results suggest that SUMOylation of PAF1/PD2 interacts with PTM for PDAC cell survival. Furthermore, abolishing the SUMOylation in PDAC cells enhances the effectiveness of radiotherapy. Overall, our results demonstrate a novel PTM and PAF1/PD2 interaction through SUMOylation, and inhibiting the SUMOylation of PAF1/PD2 enhance the therapeutic efficacy for PDAC.


Assuntos
Carcinoma Ductal Pancreático/radioterapia , Neoplasias Pancreáticas/radioterapia , Proteína da Leucemia Promielocítica/metabolismo , Tolerância a Radiação/fisiologia , Sumoilação , Fatores de Transcrição/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/patologia , Dano ao DNA/efeitos da radiação , Humanos , Pâncreas/patologia , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína SUMO-1/metabolismo , Fatores de Transcrição/genética
11.
Cancer Metastasis Rev ; 40(3): 721-738, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591244

RESUMO

Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.


Assuntos
Biologia Computacional , Neoplasias Pancreáticas , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Prognóstico
12.
Theranostics ; 11(3): 1493-1512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391547

RESUMO

Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for tumor targeting and mechanisms of therapeutic resistance that is not only caused by the heterogeneity of tumor antigen, but also the resistance imposed by tumor microenvironment (TME), including inefficient delivery to the tumor, alteration of effector functions in the TME, and Fc-gamma receptor expression diversity and polymorphism. Further, this article provides a perspective on potential strategies to overcome these barriers and how diagnostic and prognostic biomarkers are being used in predicting response to mAb-based therapies. Overall, understanding these interdependent parameters can improve the current mAb-based formulations and develop novel mAb-based therapeutics for achieving durable clinical outcomes in a large subset of patients.


Assuntos
Anticorpos Monoclonais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Humanos , Receptores de IgG/imunologia , Microambiente Tumoral/imunologia
13.
Cancer Res ; 81(1): 91-102, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127746

RESUMO

Secreted mucin 5AC (MUC5AC) is the most abundantly overexpressed member of the mucin family during early pancreatic intraepithelial neoplasia stage I (PanIN-I) of pancreatic cancer. To comprehend the contribution of Muc5ac in pancreatic cancer pathology, we genetically ablated it in an autochthonous murine model (KrasG12D; Pdx-1cre, KC), which mirrors the early stages of pancreatic cancer development. Neoplastic onset and the PanIN lesion progression were significantly delayed in Muc5ac knockout (KrasG12D; Pdx-1 cre; Muc5ac-/-, KCM) animals with a 50% reduction in PanIN-2 and 70% reduction in PanIN-3 lesions compared with KC at 50 weeks of age. High-throughput RNA-sequencing analysis from pancreatic tissues of KCM animals revealed a significant decrease in cancer stem cell (CSC) markers Aldh1a1, Klf4, EpCAM, and CD133. Furthermore, the silencing of MUC5AC in human pancreatic cancer cells reduced their tumorigenic propensity, as indicated by a significant decline in tumor formation frequency by limiting dilution assay upon subcutaneous administration. The contribution of MUC5AC in CSC maintenance was corroborated by a significant decrease in tumor burden upon orthotopic implantation of MUC5AC-depleted pancreatic cancer cells. Mechanistically, MUC5AC potentiated oncogenic signaling through integrin αvß5, pSrc (Y416), and pSTAT3 (Y705). Phosphorylated STAT3, in turn, upregulated Klf4 expression, thereby enriching the self-renewing CSC population. A strong positive correlation of Muc5ac with Klf4 and pSTAT3 in the PanIN lesions of KC mouse pancreas reinforces the crucial involvement of MUC5AC in bolstering the CSC-associated tumorigenic properties of Kras-induced metaplastic cells, which leads to pancreatic cancer onset and progression. SIGNIFICANCE: This study elucidates that de novo expression of MUC5AC promotes cancer cell stemness during Kras-driven pancreatic tumorigenesis and can be targeted for development of a novel therapeutic regimen.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Mucina-5AC/fisiologia , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochim Biophys Acta Rev Cancer ; 1873(2): 188362, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32298747

RESUMO

Trefoil factors 1, 2, and 3 (TFFs) are a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract (GI). TFFs maintain and restore epithelial structural integrity via transducing key signaling pathways for epithelial cell migration, proliferation, and invasion. In recent years, TFFs have emerged as key players in the pathogenesis of multiple diseases, especially cancer. Initially recognized as tumor suppressors, emerging evidence demonstrates their key role in tumor progression and metastasis, extending their actions beyond protection. However, to date, a comprehensive understanding of TFFs' mechanism of action in tumor initiation, progression and metastasis remains obscure. The present review discusses the structural, functional and mechanistic implications of all three TFF family members in tumor progression and metastasis. Also, we have garnered information from studies on their structure and expression status in different organs, along with lessons from their specific knockout in mouse models. In addition, we highlight the emerging potential of using TFFs as a biomarker to stratify tumors for better therapeutic intervention.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/metabolismo , Fatores Trefoil/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/agonistas , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/antagonistas & inibidores , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Progressão da Doença , Intervalo Livre de Doença , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mucosa/metabolismo , Estadiamento de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/mortalidade , Proteínas Oncogênicas/análise , Proteínas Oncogênicas/antagonistas & inibidores , Prognóstico , Domínios Proteicos , Fatores Trefoil/agonistas , Fatores Trefoil/análise , Fatores Trefoil/antagonistas & inibidores , Proteínas Supressoras de Tumor/agonistas , Proteínas Supressoras de Tumor/análise
15.
Expert Opin Ther Targets ; 22(8): 675-686, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29999426

RESUMO

INTRODUCTION: MUC16 is overexpressed in multiple cancers and plays an important role in tumorigenicity and acquired resistance to therapy. Area covered: In this review, we describe the role of MUC16 under normal physiological conditions and during tumorigenesis. First, we provide a summary of research on MUC16 from its discovery as CA125 to present anti-MUC16 therapy trials that are currently in the initial phases of clinical testing. Finally, we discuss the reasons for the limited effectiveness of these therapies and discuss the direction and focus of future research. Expert opinion: Apart from its protective role in normal physiology, MUC16 contributes to disease progression and metastasis in several malignancies. Due to its aberrant overexpression, it is a promising target for diagnosis and therapy. Cleavage and shedding of its extracellular domain is the major barrier for efficient targeting of MUC16-expressing cancers. Concerted efforts should be undertaken to target the noncleaved cell surface retained portion of MUC16. Such efforts should be accompanied by basic research to understand MUC16 cleavage and decipher the functioning of MUC16 cytoplasmic tail. While previous efforts to activate anti-MUC16 immune response using anti-CA125 idiotype antibodies have met with limited success, ideification of neo-antigenic epitopes in MUC16 that correlate with improved survival have raised raised hopes for developing MUC16-targeted immunotherapy.


Assuntos
Antígeno Ca-125/genética , Proteínas de Membrana/genética , Terapia de Alvo Molecular , Neoplasias/terapia , Animais , Antígeno Ca-125/imunologia , Progressão da Doença , Epitopos/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia/métodos , Proteínas de Membrana/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Sobrevida
16.
Protein Pept Lett ; 13(6): 545-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16842106

RESUMO

The effect of methanol and trifluoroethanol (TFE) on the structure and folding of molten globule state of procerain, a cysteine protease from Calotropis procera, was studied by circular dichroism spectroscopy. The magnitude of ellipticity at 215 nm, as a measure of beta-sheet content, is dependent on the concentration of the TFE. Interestingly, a switch over from the beta-sheet structure of the molten globule state to alpha-helix was observed at 60% TFE and the ellipticity at 222 nm increased as a function of TFE concentration beyond this critical TFE concentration. Temperature induced unfolding of the molten globule state of procerain in 10% methanol showed stabilization of alpha-rich domain with concomitant destabilization of beta-rich domain. Using higher concentration of methanol (20-40 %) had no stabilizing effect on the alpha-rich domain however, the beta-rich domain was destabilized, indicating that the stability of the domains were not interdependent and that a low concentration of methanol induced stabilization in alpha-rich domain.


Assuntos
Cisteína Endopeptidases/química , Solventes/química , Trifluoretanol/química , Calotropis , Dicroísmo Circular , Temperatura Alta , Desnaturação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Termodinâmica , Trifluoretanol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA