Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8362-8373, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405517

RESUMO

Human single-stranded DNA binding protein 1 (hSSB1) forms a heterotrimeric complex, known as a sensor of single-stranded DNA binding protein 1 (SOSS1), in conjunction with integrator complex subunit 3 (INTS3) and C9ORF80. This sensory protein plays an important role in homologous recombination repair of double-strand breaks in DNA to efficiently recruit other repair proteins at the damaged sites. Previous studies have identified elevated hSSB1-mediated DNA repair activities in various cancers, highlighting its potential as an anticancer target. While prior efforts have focused on inhibiting hSSB1 by targeting its DNA binding domain, this study seeks to explore the inhibition of the hSSB1 function by disrupting its interaction with the key partner protein INTS3 in the SOSS1 complex. The investigative strategy entails a molecular docking-based screening of a specific compound library against the three-dimensional structure of INTS3 at the hSSB1 binding interface. Subsequent assessments involve in vitro analyses of protein-protein interaction (PPI) disruption and cellular effects through co-immunoprecipitation and immunofluorescence assays, respectively. Moreover, the study includes an evaluation of the structural stability of ligands at the INTS3 hot-spot site using molecular dynamics simulations. The results indicate a potential in vitro disruption of the INTS3-hSSB1 interaction by three of the tested compounds obtained from the virtual screening with one impacting the recruitment of hSSB1 and INTS3 to chromatin following DNA damage. To our knowledge, our results identify the first set of drug-like compounds that functionally target INTS3-hSSB1 interaction, and this provides the basis for further biophysical investigations that should help to speed up PPI inhibitor discovery.

2.
Br J Cancer ; 130(7): 1196-1205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287178

RESUMO

BACKGROUND: 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS: Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS: Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS: AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.


Assuntos
Neoplasias Colorretais , Fluoruracila , Organofosfatos , Quinazolinas , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Aurora Quinase B/farmacologia , Aurora Quinase B/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos
3.
Biology (Basel) ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998004

RESUMO

Human single-stranded DNA binding protein 1 (hSSB1) is critical to preserving genome stability, interacting with single-stranded DNA (ssDNA) through an oligonucleotide/oligosaccharide binding-fold. The depletion of hSSB1 in cell-line models leads to aberrant DNA repair and increased sensitivity to irradiation. hSSB1 is over-expressed in several types of cancers, suggesting that hSSB1 could be a novel therapeutic target in malignant disease. hSSB1 binding studies have focused on DNA; however, despite the availability of 3D structures, small molecules targeting hSSB1 have not been explored. Quinoline derivatives targeting hSSB1 were designed through a virtual fragment-based screening process, synthesizing them using AlphaLISA and EMSA to determine their affinity for hSSB1. In parallel, we further screened a structurally diverse compound library against hSSB1 using the same biochemical assays. Three compounds with nanomolar affinity for hSSB1 were identified, exhibiting cytotoxicity in an osteosarcoma cell line. To our knowledge, this is the first study to identify small molecules that modulate hSSB1 activity. Molecular dynamics simulations indicated that three of the compounds that were tested bound to the ssDNA-binding site of hSSB1, providing a framework for the further elucidation of inhibition mechanisms. These data suggest that small molecules can disrupt the interaction between hSSB1 and ssDNA, and may also affect the ability of cells to repair DNA damage. This test study of small molecules holds the potential to provide insights into fundamental biochemical questions regarding the OB-fold.

4.
Prostate ; 83(7): 628-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811381

RESUMO

BACKGROUND: Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS: We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS: Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS: Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.


Assuntos
Proteínas de Ligação a DNA , Proteínas Mitocondriais , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas Mitocondriais/metabolismo
5.
Cancers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572879

RESUMO

Tyrosine kinase inhibitors (TKIs) are the first-line therapy for non-small-cell lung cancers (NSCLC) that harbour sensitising mutations within the epidermal growth factor receptor (EGFR). However, resistance remains a key issue, with tumour relapse likely to occur. We have previously identified that cell division cycle-associated protein 3 (CDCA3) is elevated in adenocarcinoma (LUAD) and correlates with sensitivity to platinum-based chemotherapy. Herein, we explored whether CDCA3 levels were associated with EGFR mutant LUAD and TKI response. We demonstrate that in a small-cohort tissue microarray and in vitro LUAD cell line panel, CDCA3 protein levels are elevated in EGFR mutant NSCLC as a result of increased protein stability downstream of receptor tyrosine kinase signalling. Here, CDCA3 protein levels correlated with TKI potency, whereby CDCA3high EGFR mutant NSCLC cells were most sensitive. Consistently, ectopic overexpression or inhibition of casein kinase 2 using CX-4945, which pharmacologically prevents CDCA3 degradation, upregulated CDCA3 levels and the response of T790M(+) H1975 cells and two models of acquired resistance to TKIs. Accordingly, it is possible that strategies to upregulate CDCA3 levels, particularly in CDCA3low tumours or upon the emergence of therapy resistance, might improve the response to EGFR TKIs and benefit patients.

6.
Commun Biol ; 4(1): 638, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050247

RESUMO

Platinum-based chemotherapy remains the cornerstone of treatment for most non-small cell lung cancer (NSCLC) cases either as maintenance therapy or in combination with immunotherapy. However, resistance remains a primary issue. Our findings point to the possibility of exploiting levels of cell division cycle associated protein-3 (CDCA3) to improve response of NSCLC tumours to therapy. We demonstrate that in patients and in vitro analyses, CDCA3 levels correlate with measures of genome instability and platinum sensitivity, whereby CDCA3high tumours are sensitive to cisplatin and carboplatin. In NSCLC, CDCA3 protein levels are regulated by the ubiquitin ligase APC/C and cofactor Cdh1. Here, we identified that the degradation of CDCA3 is modulated by activity of casein kinase 2 (CK2) which promotes an interaction between CDCA3 and Cdh1. Supporting this, pharmacological inhibition of CK2 with CX-4945 disrupts CDCA3 degradation, elevating CDCA3 levels and increasing sensitivity to platinum agents. We propose that combining CK2 inhibitors with platinum-based chemotherapy could enhance platinum efficacy in CDCA3low NSCLC tumours and benefit patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antígenos CD/metabolismo , Biomarcadores Farmacológicos/sangue , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos/fisiologia , Tratamento Farmacológico/métodos , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Platina/uso terapêutico
7.
Front Oncol ; 11: 615967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777753

RESUMO

Platinum-based chemotherapy remains the cornerstone of treatment for most people with non-small cell lung cancer (NSCLC), either as adjuvant therapy in combination with a second cytotoxic agent or in combination with immunotherapy. Resistance to therapy, either in the form of primary refractory disease or evolutionary resistance, remains a significant issue in the treatment of NSCLC. Hence, predictive biomarkers and novel combinational strategies are required to improve the effectiveness and durability of treatment response 6for people with NSCLC. The aim of this study was to identify novel biomarkers and/or druggable proteins from deregulated protein networks within non-oncogene driven disease that are involved in the cellular response to cisplatin. Following exposure of NSCLC cells to cisplatin, in vitro quantitative mass spectrometry was applied to identify altered protein response networks. A total of 65 proteins were significantly deregulated following cisplatin exposure. These proteins were assessed to determine if they are druggable targets using novel machine learning approaches and to identify whether these proteins might serve as prognosticators of platinum therapy. Our data demonstrate novel candidates and drug-like molecules warranting further investigation to improve response to platinum agents in NSCLC.

8.
Front Oncol ; 11: 798296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083152

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has few effective treatment options due to its lack of targetable hormone receptors. Whilst the degree of tumour infiltrating lymphocytes (TILs) has been shown to associate with therapy response and prognosis, deeper characterization of the molecular diversity that may mediate chemotherapeutic response is lacking. Here we applied targeted proteomic analysis of both chemotherapy sensitive and resistant TNBC tissue samples by the Nanostring GeoMx Digital Spatial Platform (DSP). By quantifying 68 targets in the tumour and tumour microenvironment (TME) compartments and performing differential expression analysis between responsive and non-responsive tumours, we show that increased ER-alpha expression and decreased 4-1BB and MART1 within the stromal compartments is associated with adjuvant chemotherapy response. Similarly, higher expression of GZMA, STING and fibronectin and lower levels of CD80 were associated with response within tumour compartments. Univariate overall-survival (OS) analysis of stromal proteins supported these findings, with ER-alpha expression (HR=0.19, p=0.0012) associated with better OS while MART1 expression (HR=2.3, p=0.035) was indicative of poorer OS. Proteins within tumour compartments consistent with longer OS included PD-L1 (HR=0.53, p=0.023), FOXP3 (HR=0.5, p=0.026), GITR (HR=0.51, p=0.036), SMA (HR=0.59, p=0.043), while EPCAM (HR=1.7, p=0.045), and CD95 (HR=4.9, p=0.046) expression were associated with shorter OS. Our data provides early insights into the levels of these markers in the TNBC tumour microenvironment, and their association with chemotherapeutic response and patient survival.

9.
Int J Oncol ; 55(6): 1223-1236, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638176

RESUMO

Recent evidence suggests that numerous long non­coding RNAs (lncRNAs) are dysregulated in cancer, and have critical roles in tumour development and progression. The present study investigated the ghrelin receptor antisense lncRNA growth hormone secretagogue receptor opposite strand (GHSROS) in breast cancer. Reverse transcription­quantitative polymerase chain reaction revealed that GHSROS expression was significantly upregulated in breast tumour tissues compared with normal breast tissue. Induced overexpression of GHSROS in the MDA­MB­231 breast cancer cell line significantly increased cell migration in vitro, without affecting cell proliferation, a finding similar to our previous study on lung cancer cell lines. Microarray analysis revealed a significant repression of a small cluster of major histocompatibility class II genes and enrichment of immune response pathways; this phenomenon may allow tumour cells to better evade the immune system. Ectopic overexpression of GHSROS in the MDA­MB­231 cell line significantly increased orthotopic xenograft growth in mice, suggesting that in vitro culture does not fully capture the function of this lncRNA. This study demonstrated that GHSROS may serve a relevant role in breast cancer. Further studies are warranted to explore the function and therapeutic potential of this lncRNA in breast cancer progression.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/metabolismo , Animais , Apoptose/genética , Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Progressão da Doença , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Grelina/genética , Evasão Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Endocrine ; 64(2): 393-405, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30390209

RESUMO

PURPOSE: The ghrelin axis regulates many physiological functions (including appetite, metabolism, and energy balance) and plays a role in disease processes. As ghrelin stimulates prostate cancer proliferation, the ghrelin receptor antagonist [D-Lys3]-GHRP-6 is a potential treatment for castrate-resistant prostate cancer and for preventing the metabolic consequences of androgen-targeted therapies. We therefore explored the effect of [D-Lys3]-GHRP-6 on PC3 prostate cancer xenograft growth. METHODS: NOD/SCID mice with PC3 prostate cancer xenografts were administered 20 nmoles/mouse [D-Lys3]-GHRP-6 daily by intraperitoneal injection for 14 days and tumour volume and weight were measured. RNA sequencing of tumours was conducted to investigate expression changes following [D-Lys3]-GHRP-6 treatment. A second experiment, extending treatment time to 18 days and including a higher dose of [D-Lys3]-GHRP-6 (200 nmoles/mouse/day), was undertaken to ensure repeatability. RESULTS: We demonstrate here that daily intraperitoneal injection of 20 nmoles/mouse [D-Lys3]-GHRP-6 reduces PC3 prostate cancer xenograft tumour volume and weight in NOD/SCID mice at two weeks post treatment initiation. RNA-sequencing revealed reduced expression of epidermal growth factor receptor (EGFR) in these tumours. Further experiments demonstrated that the effects of [D-Lys3]-GHRP-6 are transitory and lost after 18 days of treatment. CONCLUSIONS: We show that [D-Lys3]-GHRP-6 has transitory effects on prostate xenograft tumours in mice, which rapidly develop an apparent resistance to the antagonist. Although further studies on [D-Lys3]-GHRP-6 are warranted, we suggest that daily treatment with the antagonist is not a suitable treatment for advanced prostate cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Expressão Gênica/efeitos dos fármacos , Oligopeptídeos/farmacologia , Neoplasias da Próstata/patologia , Receptores de Grelina/antagonistas & inibidores , Animais , Receptores ErbB/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
11.
PLoS One ; 13(11): e0198495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30458004

RESUMO

Ghrelin is a peptide hormone which, when acylated, regulates appetite, energy balance and a range of other biological processes. Ghrelin predominately circulates in its unacylated form (unacylated ghrelin; UAG). UAG has a number of functions independent of acylated ghrelin, including modulation of metabolic parameters and cancer progression. UAG has also been postulated to antagonise some of the metabolic effects of acyl-ghrelin, including its effects on glucose and insulin regulation. In this study, Rag1-/- mice with high-fat diet-induced obesity and hyperinsulinaemia were subcutaneously implanted with PC3 prostate cancer xenografts to investigate the effect of UAG treatment on metabolic parameters and xenograft growth. Daily intraperitoneal injection of 100 µg/kg UAG had no effect on xenograft tumour growth in mice fed normal rodent chow or 23% high-fat diet. UAG significantly improved glucose tolerance in host Rag1-/- mice on a high-fat diet, but did not significantly improve other metabolic parameters. We propose that UAG is not likely to be an effective treatment for prostate cancer, with or without associated metabolic syndrome.


Assuntos
Grelina/farmacologia , Proteínas de Homeodomínio/metabolismo , Hiperinsulinismo/complicações , Obesidade/complicações , Neoplasias da Próstata/tratamento farmacológico , Animais , Glicemia , Linhagem Celular Tumoral , Dieta Hiperlipídica , Grelina/uso terapêutico , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Hiperinsulinismo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Neoplasias da Próstata/complicações , Neoplasias da Próstata/metabolismo
12.
J Theor Biol ; 437: 251-260, 2018 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29102643

RESUMO

Collective cell spreading takes place in spatially continuous environments, yet it is often modelled using discrete lattice-based approaches. Here, we use data from a series of cell proliferation assays, with a prostate cancer cell line, to calibrate a spatially continuous individual based model (IBM) of collective cell migration and proliferation. The IBM explicitly accounts for crowding effects by modifying the rate of movement, direction of movement, and the rate of proliferation by accounting for pair-wise interactions. Taking a Bayesian approach we estimate the free parameters in the IBM using rejection sampling on three separate, independent experimental data sets. Since the posterior distributions for each experiment are similar, we perform simulations with parameters sampled from a new posterior distribution generated by combining the three data sets. To explore the predictive power of the calibrated IBM, we forecast the evolution of a fourth experimental data set. Overall, we show how to calibrate a lattice-free IBM to experimental data, and our work highlights the importance of interactions between individuals. Despite great care taken to distribute cells as uniformly as possible experimentally, we find evidence of significant spatial clustering over short distances, suggesting that standard mean-field models could be inappropriate.


Assuntos
Algoritmos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Biológicos , Teorema de Bayes , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Fatores de Tempo
13.
Bull Math Biol ; 79(5): 1028-1050, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28337676

RESUMO

Scratch assays are used to study how a population of cells re-colonises a vacant region on a two-dimensional substrate after a cell monolayer is scratched. These experiments are used in many applications including drug design for the treatment of cancer and chronic wounds. To provide insights into the mechanisms that drive scratch assays, solutions of continuum reaction-diffusion models have been calibrated to data from scratch assays. These models typically include a logistic source term to describe carrying capacity-limited proliferation; however, the choice of using a logistic source term is often made without examining whether it is valid. Here we study the proliferation of PC-3 prostate cancer cells in a scratch assay. All experimental results for the scratch assay are compared with equivalent results from a proliferation assay where the cell monolayer is not scratched. Visual inspection of the time evolution of the cell density away from the location of the scratch reveals a series of sigmoid curves that could be naively calibrated to the solution of the logistic growth model. However, careful analysis of the per capita growth rate as a function of density reveals several key differences between the proliferation of cells in scratch and proliferation assays. Our findings suggest that the logistic growth model is valid for the entire duration of the proliferation assay. On the other hand, guided by data, we suggest that there are two phases of proliferation in a scratch assay; at short time, we have a disturbance phase where proliferation is not logistic, and this is followed by a growth phase where proliferation appears to be logistic. These two phases are observed across a large number of experiments performed at different initial cell densities. Overall our study shows that simply calibrating the solution of a continuum model to a scratch assay might produce misleading parameter estimates, and this issue can be resolved by making a distinction between the disturbance and growth phases. Repeating our procedure for other scratch assays will provide insight into the roles of the disturbance and growth phases for different cell lines and scratch assays performed on different substrates.


Assuntos
Proliferação de Células/fisiologia , Modelos Biológicos , Contagem de Células , Linhagem Celular Tumoral , Humanos , Modelos Logísticos , Masculino , Conceitos Matemáticos , Neoplasias da Próstata/patologia , Cicatrização/fisiologia
14.
Sci Rep ; 7(1): 491, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28352127

RESUMO

Hyperinsulinaemia, obesity and dyslipidaemia are independent and collective risk factors for many cancers. Here, the long-term effects of a 23% Western high-fat diet (HFD) in two immunodeficient mouse strains (NOD/SCID and Rag1 -/-) suitable for engraftment with human-derived tissue xenografts, and the effect of diet-induced hyperinsulinaemia on human prostate cancer cell line xenograft growth, were investigated. Rag1 -/-and NOD/SCID HFD-fed mice demonstrated diet-induced impairments in glucose tolerance at 16 and 23 weeks post weaning. Rag1 -/- mice developed significantly higher fasting insulin levels (2.16 ± 1.01 ng/ml, P = 0.01) and increased insulin resistance (6.70 ± 1.68 HOMA-IR, P = 0.01) compared to low-fat chow-fed mice (0.71 ± 0.12 ng/ml and 2.91 ± 0.42 HOMA-IR). This was not observed in the NOD/SCID strain. Hepatic steatosis was more extensive in Rag1 -/- HFD-fed mice compared to NOD/SCID mice. Intramyocellular lipid storage was increased in Rag1 -/- HFD-fed mice, but not in NOD/SCID mice. In Rag1 -/- HFD-fed mice, LNCaP xenograft tumours grew more rapidly compared to low-fat chow-fed mice. This is the first characterisation of the metabolic effects of long-term Western HFD in two mouse strains suitable for xenograft studies. We conclude that Rag1 -/- mice are an appropriate and novel xenograft model for studying the relationship between cancer and hyperinsulinaemia.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia , Peso Corporal , Dieta Hiperlipídica , Feminino , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Hiperinsulinismo/imunologia , Insulina/sangue , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Pâncreas/metabolismo
15.
Int J Cancer ; 140(10): 2351-2363, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28205224

RESUMO

Metastatic renal cell carcinoma is a largely incurable disease, and existing treatments targeting angiogenesis and tyrosine kinase receptors are only partially effective. Here we reveal that MUC13, a cell surface mucin glycoprotein, is aberrantly expressed by most renal cell carcinomas, with increasing expression positively correlating with tumor grade. Importantly, we demonstrated that high MUC13 expression was a statistically significant independent predictor of poor survival in two independent cohorts, particularly in stage 1 cancers. In cultured renal cell carcinoma cells MUC13 promoted proliferation and induced the cell cycle regulator, cyclin D1, and inhibited apoptosis by inducing the anti-apoptotic proteins, BCL-xL and survivin. Silencing of MUC13 expression inhibited migration and invasion, and sensitized renal cancer cells to killing by the multi-kinase inhibitors used clinically, sorafenib and sunitinib, and reversed acquired resistance to these drugs. Furthermore, we demonstrated that MUC13 promotion of renal cancer cell growth and survival is mediated by activation of nuclear factor κB, a transcription factor known to regulate the expression of genes that play key roles in the development and progression of cancer. These results show that MUC13 has potential as a prognostic marker for aggressive early stage renal cell cancer and is a plausible target to sensitize these tumors to therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Renais/patologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais/patologia , Mucinas/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Western Blotting , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Indóis/administração & dosagem , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Estadiamento de Neoplasias , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Prognóstico , Pirróis/administração & dosagem , Sorafenibe , Sunitinibe , Taxa de Sobrevida , Células Tumorais Cultivadas
16.
Oncotarget ; 7(38): 61000-61020, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27876705

RESUMO

Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Genoma Humano , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Lentivirus/metabolismo , Fases de Leitura Aberta , Plasmídeos/metabolismo , Vimentina/metabolismo
17.
Clin Exp Metastasis ; 33(4): 385-99, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26932199

RESUMO

The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.


Assuntos
Antineoplásicos/administração & dosagem , Movimento Celular/efeitos dos fármacos , Metástase Neoplásica/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Neoplasias da Próstata/patologia
18.
J Theor Biol ; 390: 136-45, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646767

RESUMO

Scratch assays are difficult to reproduce. Here we identify a previously overlooked source of variability which could partially explain this difficulty. We analyse a suite of scratch assays in which we vary the initial degree of confluence (initial cell density). Our results indicate that the rate of re-colonisation is very sensitive to the initial density. To quantify the relative roles of cell migration and proliferation, we calibrate the solution of the Fisher-Kolmogorov model to cell density profiles to provide estimates of the cell diffusivity, D, and the cell proliferation rate, λ. This procedure indicates that the estimates of D and λ are very sensitive to the initial density. This dependence suggests that the Fisher-Kolmogorov model does not accurately represent the details of the collective cell spreading process, since this model assumes that D and λ are constants that ought to be independent of the initial density. Since higher initial cell density leads to enhanced spreading, we also calibrate the solution of the Porous-Fisher model to the data as this model assumes that the cell flux is an increasing function of the cell density. Estimates of D and λ associated with the Porous-Fisher model are less sensitive to the initial density, suggesting that the Porous-Fisher model provides a better description of the experiments.


Assuntos
Algoritmos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Biológicos , Bioensaio/métodos , Contagem de Células , Linhagem Celular Tumoral , Humanos , Reprodutibilidade dos Testes , Estresse Mecânico , Fatores de Tempo
19.
BMC Syst Biol ; 9: 38, 2015 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-26188761

RESUMO

BACKGROUND: Standard methods for quantifying IncuCyte ZOOM(™) assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM(™) images to the solution of the Fisher-Kolmogorov model. RESULTS: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM(™) assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM(™) assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. CONCLUSIONS: Our approach for estimating D, λ and K from an IncuCyte ZOOM(™) assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.


Assuntos
Movimento Celular , Proliferação de Células , Difusão , Modelos Biológicos , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA