Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bull Entomol Res ; 114(2): 244-253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444240

RESUMO

Since metabolism, survival, and reproduction in hexapods are closely related to temperatures; changes in the mean and variance of temperature are major aspects of global climate change. In the typical context of biological control, understanding how predator-prey systems are impacted under thermal conditions can make pest control more effective and resilient. With this view, this study investigated temperature-mediated development and predation parameters of the predator Harmonia axyridis against the potential prey Spodoptera litura. The age-stage, two-sex life table of the predator was constructed at four temperatures (i.e. 15, 20, 25, and 30°C) by feeding on the first instar larvae of S. litura. Our results showed that the mean generation time (T) decreased but the intrinsic rate of increase (r) and the finite rate of increase (λ) increased with increased temperature. The mean duration of the total preadult stage decreased with higher temperatures. The T and r were 70.47 d and 0.0769 d-1 at 15°C; 58.41 d and 0.0958 d-1 at 20°C; 38.71 d and 0.1526 d-1 at 25°C; and 29.59 d and 0.1822 d-1 at 30°C, respectively. The highest net reproductive rate (R0) and fecundity were obtained at 25°C. The highest λ (1.1998 d-1) and lowest T (29.59 d) were obtained at 30°C, whereas the maximum net predation rate (C0) was at 25°C. Total population and predation rates projections were the highest at 30°C. Based on these findings, we anticipate that biological control strategies for this predator release against S. litura should be attuned to warming scenarios to achieve better biocontrol functions.


Assuntos
Besouros , Larva , Controle Biológico de Vetores , Comportamento Predatório , Reprodução , Spodoptera , Temperatura , Animais , Spodoptera/fisiologia , Spodoptera/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Besouros/fisiologia , Besouros/crescimento & desenvolvimento , Feminino , Masculino
2.
J Med Entomol ; 61(1): 191-200, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983140

RESUMO

Curcuma longa L. (Zingiberales: Zingiberaceae) leaf and rhizome essential oils were evaluated for their toxicity and repellency against invasive fire ants: red imported fire ants (RIFA), Solenopsis invicta Buren, black imported fire ants (BIFA), Solenopsis richteri Forel, and a reproductively functional hybrid (HIFA). Ar-turmerone was the major constituent of leaf (42.4%) and rhizome (40.4%) essential oils. A range of concentrations starting from 156 µg/g until the failure of treatment were used. Removal of treated sand in digging bioassay was used as a criterion for repellency. Leaf essential oil showed significantly higher repellency at concentrations of 19.5, 9.8, and 4.9 µg/g against RIFA, BIFA, and HIFA workers, respectively, as compared with control whereas rhizome essential oil was active at 39, 19.5, and 4.9 µg/g against BIFA, RIFA, and HIFA, respectively. Ar-turmerone exhibited repellency at 19.5 µg/g against HIFA workers whereas DEET (N,N-diethyl-meta-toluamide) failed at 39 µg/g. Leaf essential oil showed LC50 values of 85.8, 97.7, and 182.7µg/g against RIFA, BIFA and HIFA workers, whereas the rhizome essential oil had LC50 values of 127, 109.9, and 151.2 µg/g against these species, respectively. Ar-turmerone, tested only against HIFA, with LC50 value of 57.2 was the most active compound. Bifenthrin, a commonly used pyrethroid, with LC50 of 0.03, 0.32, and 0.018 µg/g was toxic against RIFA, BIFA, and HIFA workers, respectively. Both the essential oils and ar-turmerone showed toxicity and repellency against imported fire ants. Different formulations of these natural products will be tested to explore the use potential of these natural products under field conditions.


Assuntos
Formigas , Repelentes de Insetos , Inseticidas , Cetonas , Óleos Voláteis , Sesquiterpenos , Animais , Óleos Voláteis/farmacologia , Formigas Lava-Pés , Curcuma , Repelentes de Insetos/farmacologia
3.
PLoS One ; 18(11): e0294775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015916

RESUMO

Synthetic insecticides heavily applied to manage agricultural pests are highly hazardous to the environment and non-target organisms. Their overuse through repeated treatments in smallholder farming communities is frequent. Botanical biopesticides are ideal for sustainable pest management in agricultural environments by keeping synthetic insecticide use at a minimum. Here we evaluated a locally prepared neem seed extract (NSE) alongside emamectin benzoate against both lepidopteran pests Helicoverpa armigera (Hübner) and Spodoptera exigua (Hübner) on tomato Lycopersicon esculentum Mill under natural field conditions in Pakistan. We compared pest severity, fruit injury, quality, marketability, and cost:benefit ratio (CBR) between treatments. The concentration of azadirachtin A in the NSE was 26.5 ppm. NSE at 2% (20 mL/L) and the emamectin benzoate at the recommended field rate in Pakistan were sprayed weekly throughout the fruiting stage. The pest larvae were significantly more abundant on fruits than on flowers and leaves. Fruit injury and losses were significantly more important in untreated control compared to NSE and emamectin benzoate treatments. NSE efficacy varied with respect to the cultivars used and the seasons. Cultivar Eden harboured more pests than Adventa, and emamectin benzoate suppressed more pest individuals than NSE. Both the insecticidal treatments were comparable in terms of marketable yield productions as well as unmarketable, uninjured, and recovered fruit yields. NSE generated a higher CBR (1: 9.26) than emamectin benzoate (1: 3.23). NSE suppressed pests by acting as an antifeedant, similar to its synthetic counterpart. Smallholder growers can thus use NSE as a cost-effective solution in tomato pest management in Pakistan.


Assuntos
Inseticidas , Solanum lycopersicum , Humanos , Animais , Agentes de Controle Biológico , Fazendeiros , Análise Custo-Benefício , Países em Desenvolvimento , Inseticidas/farmacologia , Controle de Pragas , Larva
4.
J Xenobiot ; 13(4): 641-652, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37987442

RESUMO

Essential oils from five Baccharis species were screened for their toxicity and biting deterrence/repellency against yellow fever mosquito, Aedes aegypti (L.), and imported fire ants, including Solenopsis invicta Buren (RIFA), Solenopsis richteri Forel (BIFA) and their hybrids (HIFA). Baccharis microdonta DC. and B. punctulata DC. at 10 µg/cm2 showed biting deterrence similar to DEET, N, N-diethyl-meta-toluamide at 25 nmol/cm2, whereas the repellency of B. pauciflosculosa DC., B. sphenophylla Dusén ex Malme and B. reticularioides Deble & A.S. Oliveira essential oils was significantly lower than DEET against mosquitoes. Two major compounds from the active essential oils, kongol and spathulenol, also exhibited biting deterrence similar to DEET against mosquitoes. The highest toxicity exhibited against mosquitoes was by Baccharis punctulata essential oil (LC50 = 20.4 ppm), followed by B. pauciflosculosa (LC50 = 31.9 ppm), B. sphenophylla (LC50 = 30.8 ppm), B. microdonta (LC50 = 28.6 ppm), kongol (LC50 = 32.3 ppm), spathulenol (LC50 = 48.7 ppm) and B. reticularioides essential oil (LC50 = 84.4 ppm). Baccharis microdonta essential oil showed repellency against RIFA, BIFA and HIFA at 4.9, 4.9 and 39 µg/g, respectively. Baccharis microdonta essential oil also showed toxicity with LC50 of 78.9, 97.5 and 136.5 µg/g against RIFA, BIFA and HIFA, respectively, at 24 h post treatment.

5.
Insects ; 14(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37887802

RESUMO

In the United States, imported fire ants are commonly referred to as red imported fire ants (Solenopsis invicta Buren), black imported fire ants (S. richteri Forel), and hybrid imported fire ants (S. invicta × S. richteri). They are significant pests, and their control heavily relies on synthetic insecticides. The extensive use of insecticides has led to public concern about their potential negative effects on human health and the well-being of wildlife and the environment. As an alternative, plant-derived natural compounds, particularly essential oils (EOs) and their main constituents, show promise as safe and environmentally friendly products for controlling fire ants. Repellants are useful in managing fire ants, and plant-derived natural repellants may serve as a safer and more environmentally friendly option. This study investigates the repellency of EO-derived compounds carvacrol, thymol, and their acetates against imported fire ant workers. The results revealed that carvacrol, a GRAS compound (Generally Recognized As Safe), was the most potent repellent against S. invicta, S. richteri, and their hybrid, with minimum repellent effective doses (MREDs) of 0.98 µg/g, 7.80 µg/g, and 0.98 µg/g, respectively. Thymol also exhibited strong repellency, with MREDs of 31.25 µg/g, 31.25 µg/g, and 7.8 µg/g, respectively. Furthermore, thyme-red essential oil, characterized by a thymol chemotype containing 48.8% thymol and 5.1% carvacrol, was found to effectively repel the hybrid ants with an MRED of 15.6 µg/g. In contrast, thyme essential oil, characterized by a linalool chemotype lacking thymol and carvacrol, did not exhibit any repellent effect, even at the highest tested dose of 125 µg/g. This study provides the first evidence of the potent repellency of carvacrol and thymol against imported fire ant workers, indicating their potential as promising repellents for fire ant control.

6.
Molecules ; 28(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630353

RESUMO

The U.S. Department of Agriculture (USDA) has established research programs to fight the phytopathogen Colletotrichum fragariae and the invasive red imported fire ant, Solenopsis invicta. C. fragariae is known to cause anthracnose disease in fruits and vegetables, while S. invicta is known for its aggressive behavior and painful stings and for being the cause of significant damage to crops, as well as harm to humans and animals. Many plants have been studied for potential activity against C. fragariae and S. invicta. Among the studied plants, Houttuynia cordata Thunb has been shown to contain 2-undecanone, which h is known for its antifungal activity against Colletotrichum gloesporioides. Based on the mean amount of sand removed, 2-undecanone showed significant repellency at 62.5 µg/g, similar to DEET (N,N-diethyl-meta-toluamide), against S. invicta. The 2-Undecanone with an LC50 of 44.59 µg/g showed toxicity against S. invicta workers. However, neither H. cordata extract nor 2-undecanone had shown activity against C. fragariae despite their known activity against C. gloesporioides, which in turn motivates us in repositioning 2-undecanone as a selected candidate for a Claisen-Schmidt condensation that enables access to several analogs (2a-f). Among the prepared analogs, (E)-1-(3-methylbenzo[b]thiophen-2-yl)dodec-1-en-3-one (2b) and (E)-1-(5-bromothiophen-2-yl)dodec-1-en-3-one (2f) showed promising activity against C. fragariae, revealing a distinctive structural activity relationship (SAR). The generated analogs revealed a clear regioselectivity pattern through forming the C=C alkene bond at position C-1. These data open the window for further lead optimization and product development in the context of managing C. fragariae and S. invicta.


Assuntos
Formigas , Colletotrichum , Fungicidas Industriais , Houttuynia , Repelentes de Insetos , Inseticidas , Animais , Humanos , Repelentes de Insetos/farmacologia
7.
Molecules ; 28(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513455

RESUMO

Matricaria chamomilla flower essential oils (EOs) blue Egyptian (EO-1), chamomile German CO2 (EO-2), and chamomile German (EO-3) and the pure compound α-bisabolol were evaluated against red imported fire ants (RIFA), Solenopsis invicta Buren, black imported fire ants, S. richteri Forel (BIFA), and hybrid imported fire ants (HIFA) for their repellency and toxicity. A series of serial dilutions were tested starting from 125 µg/g until the failure of the treatment. Based on the amount of sand removed, EO-1 showed significant repellency at dosages of 7.8, 7.8, and 31.25 µg/g against RIFA, BIFA, and HIFA, respectively. EO-3 was repellent at 3.9, 7.8, and 31.25 µg/g against BIFA, RIFA, and HIFA, whereas α-bisabolol was active at 7.8, 7.8, and 31.25 µg/g against BIFA, HIFA, and RIFA, respectively. DEET (N, N-diethyl-meta-toluamide) was active at 31.25 µg/g. Toxicity of EOs and α-bisabolol was mild to moderate. For EO-1, LC50 values were 93.6 and 188.11 µg/g against RIFA and BIFA; 98.11 and 138.4 µg/g for EO-2; and 142.92 and 202.49 µg/g for EO-3, respectively. The LC50 of α-bisabolol was 159.23 µg/g against RIFA. In conclusion, M. chamomilla EOs and α-bisabolol offer great potential to be developed as imported fire ant repellents.


Assuntos
Formigas , Repelentes de Insetos , Matricaria , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Sesquiterpenos Monocíclicos , Repelentes de Insetos/farmacologia
8.
Bull Entomol Res ; 113(4): 565-573, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37434448

RESUMO

Arthropod species diversity enhances ecosystem productivity and sustainability by increasing pollination and biological control services. Although, it is declining rapidly due to conventional agricultural intensification, organic agriculture with reduced reliance on agronomic inputs can regenerate ecosystems' resilience and restore them. Here, we report whether hexapod communities differ on both types of farming systems in small-scale field plot experiments, wherein Maize variety AG-589 was grown organically and conventionally in the 2020 and 2021 seasons. Livestock manure was applied in organic fields, whereas nitrogen and phosphorous were used as synthetic fertilizers in conventional fields. Hexapods were sampled three weeks after sowing once a week from the middle rows of subplots from both organically and conventionally grown maize. Twelve species of herbivores and four species of predators were recorded. Hexapod abundance overall and that of herbivores only was higher in conventionally cultivated maize, while predator abundance was higher in organic maize. Herbivores species diversity and evenness were significantly higher in conventional maize. Predator species diversity and evenness were significantly higher in organic maize fields. We noted predator abundance, diversity, and evenness as strong predictors to lower herbivore populations. These findings suggest that organic farming conserves natural enemies' biodiversity and regulates herbivores with increased provision of suitable habitats and prey resources for natural enemies, leading to enhanced relative abundance in their specialized niches. Thus, organic agriculture can potentially mediate better ecosystem services.


Assuntos
Artrópodes , Ecossistema , Animais , Agricultura Orgânica , Zea mays , Insetos , Biodiversidade , Agricultura
9.
Sci Rep ; 12(1): 15303, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096905

RESUMO

Biological control is one of the strategies of pest control which is determined by the biological fitness and metabolic rates of the predator species used. Temperature and resource are important factors which influence the role of insects as biocontrol agents. Harmonia axyridis is a cosmopolitan and non-specific polyphagous predator. It can survive ecologically diverse environments and exploit multiple preys. This study investigated the effects of temperature on the population parameters of H. axyridis and its predation on the eggs of prey Spodoptera litura. For this purpose, an age-stage, two-sex life table of the predator was constructed at four constant temperatures, i.e. 15, 20, 25 and 30 °C, under laboratory settings of: 70 ± 5% RH, and 16:8 h (L: D) photoperiod. A computer simulation was then used to project the population and predation responses with respect to temperatures tested. We found that the development of larvae and adult (male/female) stages of H. axyridis decreased with colder temperatures (i.e., 15 and 20 °C) but increased with warmer temperatures (25 and 30 °C). The intrinsic rate of increase (r) and mean generation time (T) were 0.0662 d-1 and 79.84 d at 15 °C, 0.0843 d-1 and 64.90 d at 20 °C, 0.1067 d-1 and 48.89 d at 25 °C, and 0.1378 d-1 and 35.55 d at 30 °C, respectively. The mean duration of the total pre-adult stage was 44.26, 32.91, 20.63, and 15.39 d at 15, 20, 25, and 30 °C, respectively. At 30 °C. the finite rate of increase (1.1477 d-1) was the highest and the mean generation time (35.55 d) was the shortest. The net predation rate (C0) was 7935.54, 10,466.28, 10,139.38, and 7126.36 eggs at 15, 20, 25, and 30 °C, respectively. Population and predation projections were proportional to temperature. These findings are important for modelling the population responses of H. axyridis to climate change and tailoring integrated pest management strategies to altered climates.


Assuntos
Besouros , Comportamento Predatório , Animais , Besouros/fisiologia , Simulação por Computador , Feminino , Estágios do Ciclo de Vida , Masculino , Spodoptera/fisiologia , Temperatura
10.
Front Plant Sci ; 13: 849574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845680

RESUMO

Functional responses are central to predator-prey dynamics and describe how predation varies with prey abundance. Functional responses often are measured without regard to prey size (i.e., body mass) or the temperature dependence of feeding rates. However, variation in prey size within populations is ubiquitous, and predation rates are often both size and temperature-dependent. Here, we assessed functional responses of larvae and adult Harmonia axyridis on the 1st, 2nd, and 3rd instars of the prey Spodoptera litura across a range of temperatures (i.e., 15, 20, 25, 30, and 35°C). The type and parameters of the functional responses were determined using logistic regression and fitted to the Roger's random predator equation. The magnitude of predation varied with the predator and prey stage, but prey predation increased with warming and predator age. Predation by the female and 4th instar of H. axyridis on the 1st instar of prey was greater, followed by the 2nd and 3rd instar of prey S. litura. No predation occurred on the larger prey for the 1st, 2nd, and 3rd instars of H. axyridis. The larvae and adult H. axyridis produced a type II (hyperbolic) functional response curve across all temperatures and the three prey types they consumed. Space clearance rates, handling time, and maximum predation rates of H. axyridis changed with temperature and prey size, increasing with temperature and decreasing with prey size, suggesting more predation will occur on younger prey. This study indicates an interactive role of temperature and prey/predator size in shaping functional responses, which might complicate the planning of effective biocontrol strategies against this serious pest.

11.
Sci Rep ; 11(1): 13565, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193927

RESUMO

In the current study, we investigated the functional response of Harmonia axyridis adults and larvae foraging on Acyrthosiphon pisum nymphs at temperatures between 15 and 35 °C. Logistic regression and Roger's random predator models were employed to determine the type and parameters of the functional response. Harmonia axyridis larvae and adults exhibited Type II functional responses to A. pisum, and warming increased both the predation activity and host aphid control mortality. Female and 4th instar H. axyridis consumed the most aphids. For fourth instar larvae and female H. axyridis adults, the successful attack rates were 0.23 ± 0.014 h-1 and 0.25 ± 0.015 h-1; the handling times were 0.13 ± 0.005 h and 0.16 ± 0.004 h; and the estimated maximum predation rates were 181.28 ± 14.54 and 153.85 ± 4.06, respectively. These findings accentuate the high performance of 4th instar and female H. axyridis and the role of temperature in their efficiency. Further, we discussed such temperature-driven shifts in predation and prey mortality concerning prey-predator foraging interactions towards biological control.


Assuntos
Afídeos/fisiologia , Besouros/fisiologia , Temperatura Alta , Comportamento Predatório/fisiologia , Animais , Feminino , Masculino , Ninfa/fisiologia
12.
Chemosphere ; 269: 129367, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388567

RESUMO

Pyriproxyfen is a biorational insecticide from IGR family, used worldwide against several economic pests. To evaluate the risk of pyriproxyfen resistance in dusky cotton bug, Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae), a major concern for cotton producers, and to formulate strategies effective to tackle resistance, a field collected population was selected with pyriproxyfen under laboratory conditions using seed-dip method. A resistant strain designated as Pyr-SEL (G18) was developed after repeatedly selecting O. hyalinipennis with pyriproxyfen over eighteen generations. Thereafter, fitness costs, realized heritability (h2) and cross-resistance were investigated. As a result of selection, Pyr-SEL (G18) developed a very high level of resistance (resistance ratio = 464.23-fold) compared with the susceptible strain unselected over twenty generations Un-SEL (G20). The Pyr-SEL (G18) conferred strong cross-resistance to bifenthrin (146.59-fold), lambda-cyhalothrin (132.96-fold) and fenoxycarb (91.06-fold), whereas showed moderate cross-resistance to diafenthiuron (28.86-fold) and fipronil (22.73-fold). The h2 estimate was 0.16 in Pyr-SEL (G18). The developmental duration of O. hyalinipennis pre-adult prolonged, but traits of λ, r and R0 reduced in Pyr-SEL (G18) compared with the Un-SEL (G20). Also, the population projection obtained lower population size for Pyr-SEL (G18) than Un-SEL (G20). Fitness studies revealed that high resistance development to pyriproxyfen lowered the relative fitness of Pyr-SEL (G18) (Rf = 0.38) compared with the Un-SEL (G20). These findings may be practically valuable in tackling O. hyalinipennis resistance for better pest management.


Assuntos
Hemípteros , Heterópteros , Inseticidas , Animais , Hemípteros/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Laboratórios , Tábuas de Vida , Piridinas
13.
Insects ; 11(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882812

RESUMO

Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is a major pest of several economically important crops with worldwide distribution. Use of insecticides is the principal strategy for its management, which has subsequently led to insecticide resistance and control failures. Functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) at larval and adult stages was evaluated in this study, using S. litura eggs as the prey at various temperatures varying between 15 and 35 °C. Based on logistic model findings, linear parameters of various predatory stages of H. axyridis at various temperatures were significantly negative, which indicate a type II functional response. The theoretical maximum number (T/Th) of eggs consumed increased with increasing temperature for all predatory stages. According to the random predator equation, the coefficients of attack rate increased and that of handling time decreased as the temperature increased. The 4th instar and adult stages were superior candidates for biocontrol of the target prey, typically at higher temperatures. The maximum attack rate (0.546 ± 0.058 h) and lowest handling time (0.189 ± 0.004 h-1) were exhibited by the females at 30 and 35 °C, respectively, whereas these parameters were inferior for early instars. These findings clearly depict that the 4th instar and adult predators are efficient egg consumers and can serve as potential suppressors of S. litura field populations. The limitations of the predictions formulated by functional response trials are also discussed.

14.
Sci Rep ; 9(1): 7684, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118444

RESUMO

Synthetic chemical pesticides can enhance crop yields but also have undesired effects. Alternative 'botanical insecticides' may also have non-target effects on pollinators and biocontrol services. Employing action thresholds (ATs) can reduce pesticide (whether synthetic or botanical) use compared to fixed-interval applications. Here the azadirachtin-based botanical formulation NeemAzal and a neem seed extract (NSE) were evaluated in field spraying trials alongside commonly-used synthetics (Voliam Flexi [chlorentraniliprole plus thiamethoxam] and imidacloprid) in developing ATs for the regular and cosmopolitan cauliflower pests Brevicoryne brassicae, Plutella xylostella and Spodoptera litura. We considered the size of the S. litura larvae infesting the crop in order to derive ATs. ATs per plant were higher for NeemAzal (0.55 larvae for P. xylostella and 3 larvae for large-sized S. litura) than for Voliam Flexi (0.30 larvae for P. xylostella and 0.80 larvae for S. litura) but were similar for B. brassicae (50 individuals). Higher ATs when using azadirachtin were associated with the diverse modes of action of botanicals, for instance NeemAzal and NSE deterred oviposition of S. litura. Although the exact values of ATs are likely to have regional limits, our approach can be applied for determining ATs against common lepidopteran and aphid pests in many other vegetable crop agro-ecosystems.


Assuntos
Afídeos/efeitos dos fármacos , Brassica , Glicerídeos/farmacologia , Inseticidas/farmacologia , Limoninas/farmacologia , Mariposas/efeitos dos fármacos , Terpenos/farmacologia , Tiametoxam/farmacologia , Animais , Relação Dose-Resposta a Droga , Índia , Inseticidas/síntese química , Larva/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Óvulo/efeitos dos fármacos , Estações do Ano , Especificidade da Espécie
15.
PLoS One ; 12(9): e0184639, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28953894

RESUMO

Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.


Assuntos
Afídeos/efeitos dos fármacos , Produtos Agrícolas/parasitologia , Inseticidas/farmacologia , Moringa/química , Extratos Vegetais/farmacologia , Triticum/parasitologia , Animais , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA