Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Natl Cancer Inst ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38964343

RESUMO

PURPOSE: The National Cancer Institute (NCI) issued a 2021 memorandum adopting the American Society of Clinical Oncology (ASCO) and Friends of Cancer Research (Friends) task force recommendations to broaden clinical study eligibility criteria. They recommended that washout periods be eliminated for most prior cancer therapy and when required, to utilize evidence/rationale-based criteria. The Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) consortium responded to this guidance. PROCESS: A TACL task force reviewed the consortium's research portfolio, the relevant literature and guidance documents from ASCO-Friends, NCI, and US Food and Drug Administration (FDA) to make expert consensus and evidence-based recommendations for modernizing, broadening and codifying TACL-study washout periods while ensuring consistency with pediatric ethics and federal regulations. TACL's screening log was reviewed to estimate the impact that updated washout periods would have on patient inclusivity and recruitment. RESULTS: Over a 19-year period, 42 patients (14.6% of all screened ineligible (n = 287) patients), were identified as excluded from TACL early-phase studies exclusively due to not meeting washout criteria. An additional six (2.1%) did not meet washout and at least one other exclusion criterion. A new TACL washout guidance document was developed/adopted for use. Where washout criteria were not eliminated, rationale/evidenced-based criteria were established with citation. CONCLUSION: In an effort to reduce unnecessary exclusion from clinical trials, TACL created rationale/evidenced-based washout period standards largely following guidance from the NCI/ASCO-Friends recommendations. These new, expanded eligibility criteria are expected to increase access to TACL clinical trials while maintaining safety and scientific excellence.

2.
Pediatr Blood Cancer ; : e31171, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961599

RESUMO

The hook effect is a well-described but clinically underappreciated immunoassay interference, where a falsely lowered result is caused by analyte excess. We describe a situation in which ferritin immunoassay results from a 27-year-old female with immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome were more than 1000 times lower at a reference laboratory than those determined in-house after dilution. This case underscores the importance for clinical care providers to be aware of the impact of the hook effect on ferritin measurements, and to promptly communicate with the laboratory when there are discrepancies between clinical symptoms and test results.

3.
Blood Adv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861351

RESUMO

Multiple chimeric antigen receptor (CAR) T cell therapies are FDA approved, and several are under development. While effective for some cancers, toxicities remain a limitation. The most common toxicities, i.e. cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity syndrome (ICANS), are well described. With increasing utilization, providers worldwide are reporting on other emergent, and often complicated toxicities. Given the evolving toxicity profiles and urgent need to catalogue these emerging and emergent CAR T toxicities and describe management approaches, the American Society of Hematology Subcommittee on Emerging Gene and Cell Therapies organized the first Scientific Workshop on CAR T cell toxicities during the annual society meeting. The workshop functioned to 1) aggregate reports of CAR T emergent toxicities, including movement disorders after BCMA CAR T, coagulation abnormalities, and prolonged cytopenias; 2) disseminate bedside to bench efforts elucidating pathophysiological mechanisms of CAR-T toxicities, including the intestinal microbiota and systemic immune dysregulation; and 3) highlight gaps in the availability of clinical tests such as cytokine measurements, which could be utilized to expand our knowledge around the monitoring of toxicities. Key themes emerged. First, while clinical manifestations may develop before the pathophysiologic mechanisms are understood, these must be studied to aid in the detection and prevention of such toxicities. Second, systemic immune dysregulation appears central to these emergent toxicities and research is needed to elucidate links between tumor, CAR T, and microbiota. Finally, there was consensus around an urgency to create a repository to capture emergent CAR-T toxicities and the real-world management.

4.
Med ; 5(6): 482-484, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878763

RESUMO

The efficacy of CD19 chimeric antigen receptor (CAR) T cells in B cell malignancies has generated recent interest in their application to other B cell-related pathologies, such as autoimmune diseases. Fischbach et al.1 report on the use of CD19 CAR T cells in two patients with progressive multiple sclerosis, demonstrating feasibility and safety for the first time in this disease process.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Esclerose Múltipla , Receptores de Antígenos Quiméricos , Humanos , Antígenos CD19/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
5.
Immunohorizons ; 8(6): 404-414, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864817

RESUMO

T cell activation is an essential step in chimeric Ag receptor (CAR) T (CAR T) cell manufacturing and is accomplished by the addition of activator reagents that trigger the TCR and provide costimulation. We explore several T cell activation reagents and examine their effects on key attributes of CAR T cell cultures, such as activation/exhaustion markers, cell expansion, gene expression, and transduction efficiency. Four distinct activators were examined, all using anti-CD3 and anti-CD28, but incorporating different mechanisms of delivery: Dynabeads (magnetic microspheres), TransAct (polymeric nanomatrix), Cloudz (alginate hydrogel), and Microbubbles (lipid membrane containing perfluorocarbon gas). Clinical-grade lentiviral vector was used to transduce cells with a bivalent CD19/CD22 CAR, and cell counts and flow cytometry were used to monitor the cells throughout the culture. We observed differences in CD4/CD8 ratio when stimulating with the Cloudz activator, where there was a significant skewing toward CD8 T cells. The naive T cell subset expressing CD62L+CCR7+CD45RA+ was the highest in all donors when stimulating with Dynabeads, whereas effector/effector memory cells were highest when using the Cloudz. Functional assays demonstrated differences in killing of target cells and proinflammatory cytokine secretion, with the highest killing from the Cloudz-stimulated cells among all donors. This study demonstrates that the means by which these stimulatory Abs are presented to T cells contribute to the activation, resulting in differing effects on CAR T cell function. These studies highlight important differences in the final product that should be considered when manufacturing CAR T cells for patients in the clinic.


Assuntos
Ativação Linfocitária , Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Humanos , Ativação Linfocitária/imunologia , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T/imunologia , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Antígenos CD19/imunologia , Antígenos CD19/metabolismo
6.
Transplant Cell Ther ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866240

RESUMO

The use of immunotherapies for the treatment of cancer in children, adolescents, and young adults has become common. As the use of immunotherapy has expanded, including in earlier lines of therapy, it has become evident that several aspects of how these immunotherapies impact longer-term outcomes among survivors are understudied. Traditional cancer therapies like alkylating and platin agents carry the greatest risk of infertility, but little is known about the impact of novel immunotherapies on fertility. This topic is of great interest to patients, patient advocates, and clinicians. In this article, we review immunotherapeutic agents used to treat childhood and young adult cancers and discuss potential mechanisms by which they may impact fertility based on the known interplay between the immune system and reproductive organs. We highlight the relative paucity of high-quality literature examining these late effects. We discuss interventions to optimize fertility preservation (FP) for our patients. Conducting longitudinal, collaborative, and prospective research on the fertility outcomes of pediatric and young adult patients with cancer who receive immunotherapy is critical to learn how to effectively counsel our patients on long-term fertility outcomes and indications for FP procedures. Collection of patient-level data will be necessary to draft evidence-based guidelines on which providers can make therapy recommendations.

9.
Lancet Haematol ; 11(6): e459-e470, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734026

RESUMO

Genetically engineered chimeric antigen receptor (CAR) T cells have become an effective treatment option for several advanced B-cell malignancies. Haematological side-effects, classified in 2023 as immune effector cell-associated haematotoxicity (ICAHT), are very common and can predispose for clinically relevant infections. As haematopoietic reconstitution after CAR T-cell therapy differs from chemotherapy-associated myelosuppression, a novel classification system for early and late ICAHT has been introduced. Furthermore, a risk stratification score named CAR-HEMATOTOX has been developed to identify candidates at high risk of ICAHT, thereby enabling risk-based interventional strategies. Therapeutically, growth factor support with granulocyte colony-stimulating factor (G-CSF) is the mainstay of treatment, with haematopoietic stem cell (HSC) boosts available for patients who are refractory to G-CSF (if available). Although the underlying pathophysiology remains poorly understood, translational studies from the past 3 years suggest that CAR T-cell-induced inflammation and baseline haematopoietic function are key contributors to prolonged cytopenia. In this Review, we provide an overview of the spectrum of haematological toxicities after CAR T-cell therapy and offer perspectives on future translational and clinical developments.


Assuntos
Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Linfócitos T/imunologia , Doenças Hematológicas/terapia , Doenças Hematológicas/etiologia
10.
Transplant Cell Ther ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762057

RESUMO

Genetically modified cell therapies (GMCT), particularly immune effector cells (IEC) such as chimeric receptor antigen (CAR) T cells, have shown promise in curing cancer and rare diseases after a single treatment course. Following close behind CAR T approvals are GMCT based on hematopoietic stem cells, such as products developed for hemoglobinopathies and other disorders. Academically sponsored GMCT products, often developed in academic centers without industry involvement, face challenges in sustaining access after completion of early phase studies when there is no commercial partner invested in completing registration trials for marketing applications. The American Society for Transplantation and Cellular Therapy (ASTCT) formed a task force named ACT To Sustain (Adoptive Cell Therapy to Sustain) to address the "valley of death" of academic GMCT products. This paper presents the task force's findings and considerations regarding financial sustainability of academically sponsored GMCT products in the absence of commercial development. We outline case scenarios illustrating barriers to maintaining access to promising GMCT developed by academic centers. The paper also delves into the current state of GMCT development, commercialization, and reimbursement, citing examples of abandoned products, cost estimates associated with GMCT manufacturing and real-world use of cost recovery. We propose potential solutions to address the financial, regulatory, and logistical challenges associated with sustaining access to academically sponsored GMCT products and to ensure that products with promising results do not languish in a "valley of death" due to financial or implementational barriers. The suggestions include aligning US Food and Drug Administration (FDA) designations with benefit coverage, allowing for cost recovery of certain products as a covered benefit, and engaging with regulators and policy makers to discuss alternative pathways for academic centers to provide access. We stress the importance of sustainable access to GMCT and call for collaborative efforts to develop regulatory pathways that support access to academically sponsored GMCT products.

11.
Expert Rev Clin Immunol ; 20(7): 745-763, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38739466

RESUMO

INTRODUCTION: While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED: We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION: There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.


Assuntos
Neoplasias Hematológicas , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Linfócitos T/imunologia , Recidiva , Animais , Microambiente Tumoral/imunologia
12.
J Transl Med ; 22(1): 384, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659083

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity. METHODS: This retrospective study examined cell culture supernatants from the manufacture of CAR T-cells for 20 patients with B-cell malignancies enrolled in a phase 1/2 clinical trial of anti-CD22 CAR T-cells. MetaFLEX was used to measure supernatant pH, oxygenation, and metabolites, and a Bio-Plex assay was used to assess protein levels. Correlations were assessed between the pH of cell culture media throughout manufacturing and cell proliferation as well as clinical outcomes. Next-generation sequencing was conducted to examine gene expression profiles of the final CAR T-cell products. RESULTS: A pH level at the lower range of normal at the beginning of the manufacturing process significantly correlated with measures of T-cell expansion and metabolism. Stable or rising pH during the manufacturing process was associated with clinical response, whereas a drop in pH was associated with non-response. CONCLUSIONS: pH has potential to serve as an informative factor in predicting CAR T-cell quality and clinical outcomes. Thus, its active monitoring during manufacturing may ensure a more effective CAR T-cell product.


Assuntos
Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T , Humanos , Concentração de Íons de Hidrogênio , Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Proliferação de Células , Técnicas de Cultura de Células
13.
Mol Ther ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532629

RESUMO

With expansion of chimeric antigen receptor (CAR) T cell therapy and broader utilization of anti-cytokine directed therapeutics for toxicity mitigation, the routine assessment of cytokines may enhance understanding of toxicity profiles, guide therapeutic interventions, and facilitate cross-trial comparisons. As specific cytokine elevations can correlate with and provide insights into CAR T cell toxicity, mitigation strategies, and response, we explored the reporting of cytokine detection methods and assessed for the correlation of cytokines to cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) across clinical trials. In this analysis, we reviewed 21 clinical trials across 60 manuscripts that featured a US Food and Drug Administration-approved CAR T cell construct or one of its predecessors. We highlight substantial variability and limited reporting of cytokine measurement platforms and panels used across CAR T cell clinical trials. Specifically, across 60 publications, 28 (46.7%) did not report any cytokine data, representing 6 of 21 (28.6%) clinical trials. In the 15 trials reporting cytokine data, at least 4 different platforms were used. Furthermore, correlation of cytokines with ICANS, CRS, and CRS severity was limited. Considering the fundamental role of cytokines in CAR T cell toxicity, our manuscript supports the need to establish standardization of cytokine measurements as a key biomarker essential to improving outcomes of CAR T cell therapy.

14.
15.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38298420

RESUMO

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

16.
J Clin Invest ; 134(8)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376944

RESUMO

While therapies targeting CD19 by antibodies, chimeric antigen receptor T cells (CAR-T), and T cell engagers have improved the response rates in B cell malignancies, the emergence of resistant cell populations with low CD19 expression can lead to relapsed disease. We developed an in vitro model of adaptive resistance facilitated by chronic exposure of leukemia cells to a CD19 immunotoxin. Single-cell RNA-Seq (scRNA-Seq) showed an increase in transcriptionally distinct CD19lo populations among resistant cells. Mass cytometry demonstrated that CD22 was also decreased in these CD19lo-resistant cells. An assay for transposase-accessible chromatin with sequencing (ATAC-Seq) showed decreased chromatin accessibility at promoters of both CD19 and CD22 in the resistant cell populations. Combined loss of both CD19 and CD22 antigens was validated in samples from pediatric and young adult patients with B cell acute lymphoblastic leukemia (B-ALL) that relapsed after CD19 CAR-T-targeted therapy. Functionally, resistant cells were characterized by slower growth and lower basal levels of MEK activation. CD19lo resistant cells exhibited preserved B cell receptor signaling and were more sensitive to both Bruton's tyrosine kinase (BTK) and MEK inhibition. These data demonstrate that resistance to CD19 immunotherapies can result in decreased expression of both CD19 and CD22 and can result in dependency on BTK pathways.


Assuntos
Antígenos CD19 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Criança , Humanos , Adulto Jovem , Tirosina Quinase da Agamaglobulinemia , Antígenos CD19/genética , Cromatina , Imunoterapia Adotiva , Quinases de Proteína Quinase Ativadas por Mitógeno , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética
17.
Transplant Cell Ther ; 30(1): 38-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37821079

RESUMO

Chimeric antigen receptor (CAR) T cell (CAR-T) therapy has emerged as a revolutionary cancer treatment modality, particularly in children and young adults with B cell malignancies. Through clinical trials and real-world experience, much has been learned about the unique toxicity profile of CAR-T therapy. The past decade brought advances in identifying risk factors for severe inflammatory toxicities, investigating preventive measures to mitigate these toxicities, and exploring novel strategies to manage refractory and newly described toxicities, infectious risks, and delayed effects, such as cytopenias. Although much progress has been made, areas needing further improvements remain. Limited guidance exists regarding initial administration of tocilizumab with or without steroids and the management of inflammatory toxicities refractory to these treatments. There has not been widespread adoption of preventive strategies to mitigate inflammation in patients at high risk of severe toxicities, particularly children. Additionally, the majority of research related to CAR-T toxicity prevention and management has focused on adult populations, with only a few pediatric-specific studies published to date. Given that children and young adults undergoing CAR-T therapy represent a unique population with different underlying disease processes, physiology, and tolerance of toxicities than adults, it is important that studies be conducted to evaluate acute, delayed, and long-term toxicities following CAR-T therapy in this younger age group. In this pediatric-focused review, we summarize key findings on CAR-T therapy-related toxicities over the past decade, highlight emergent CAR-T toxicities, and identify areas of greatest need for ongoing research.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Criança , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos de Linfócitos T , Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Fatores de Risco
18.
Pediatr Blood Cancer ; 71(1): e30741, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897136

RESUMO

Immune-effector cell-associated neurotoxicity syndrome (ICANS) is a significant toxicity occurring with chimeric antigen receptor (CAR) T-cell therapy, with first-line treatment options including supportive care and systemic corticosteroids. Sparse data exist on how to approach progressive/refractory cases of ICANS. We present five pediatric and young adult patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) who had progressively worsening ICANS despite systemic steroids, and received intrathecal hydrocortisone with rapid reversal of ICANS. Therapeutic lumbar punctures are routinely used in upfront ALL therapy in pediatrics, with a demonstrable safety profile, thus use of intrathecal hydrocortisone merits further prospective studies in patients with severe ICANS.


Assuntos
Síndromes Neurotóxicas , Linfócitos T , Humanos , Criança , Adulto Jovem , Hidrocortisona/uso terapêutico , Estudos Prospectivos , Linfócitos , Imunoterapia Adotiva
19.
Hematology Am Soc Hematol Educ Program ; 2023(1): 77-83, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066902

RESUMO

The tremendous successes of CD19-directed CAR T cells in children and young adults with B-cell acute lymphoblastic leukemia (B-ALL) has led to the more widespread use of this important treatment modality. With an ability to induce remission and potentially lead to long-term survival in patients with multiply relapsed/chemotherapy refractory disease, more children are now receiving this therapy with the hope of inducing a long-term durable remission (with or without consolidative hematopoietic cell transplantation). While overcoming the acute toxicities was critical to its broad implementation, the emerging utilization requires close evaluation of subacute and delayed toxicities alongside a consideration of late effects and issues related to survivorship following CAR T cells. In this underexplored area of toxicity monitoring, this article reviews the current state of the art in relationship to delayed toxicities while highlighting areas of future research in the study of late effects in children and young adults receiving CAR T cells.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Adulto Jovem , Antígenos CD19 , Progressão da Doença , Seguimentos , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
20.
Transplant Cell Ther ; 29(10): 598-607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37481241

RESUMO

Chimeric antigen receptor (CAR) T cell therapy (CAR-T) targeting the CD19 antigen on B cell acute lymphoblastic leukemia (B-ALL) has transitioned from a highly investigational therapy with limited access to a commercial therapy with established toxicities, response and survival rates, and access in numerous countries. With more than a decade of clinical study and 5 years of commercial access, data showing associations with success and failure have emerged. To address functional limitations of CAR-T and overcome constrained sample sizes when studying single-trial or single-center data, collaborative groups, including the Pediatric Real World CAR Consortium, the CAR-Multicenter Analysis, the Center for International Blood and Marrow Transplant Research, and the International BFM Study Group, among others, have been retrospectively interrogating the amassed clinical experience. The high patient numbers and varied clinical experiences compiled by these groups have defined clinical variables impacting CAR-T outcomes. Here we review published CAR-T trials and consortium/collaborative outcomes to establish variables associated with optimal response to CAR-T in children and young adults with B-ALL. We focus on findings with clinical relevance that have emerged, including data implicating pretreatment disease burden, presence of extramedullary disease, nonresponse to prior CD19 antigen targeting (blinatumomab therapy), CAR T cell dose, and fludarabine pharmacokinetics as factors impacting post-CAR-T survival. Additionally, we address the role of collaborative efforts going forward in guiding clinical practice evolution and further optimizing post-CAR-T outcomes.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Criança , Adulto Jovem , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Antígenos CD19 , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Linfoma de Burkitt/tratamento farmacológico , Linfócitos T , Estudos Multicêntricos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA