Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(1): 96-108, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548159

RESUMO

We performed more than a year of mobile, 1 Hz measurements of lung-deposited surface area (LDSA, the surface area of 20-400 nm diameter particles, deposited in alveolar regions of lungs) and optically assessed fine particulate matter (PM2.5), black carbon (BC), and nitrogen dioxide (NO2) in central London. We spatially correlated these pollutants to two urban emission sources: major roadways and restaurants. We show that optical PM2.5 is an ineffective indicator of tailpipe emissions on major roadways, where we do observe statistically higher LDSA, BC, and NO2. Additionally, we find pollutant hot spots in commercial neighborhoods with more restaurants. A low LDSA (15 µm2 cm-3) occurs in areas with fewer major roadways and restaurants, while the highest LDSA (25 µm2 cm-3) occurs in areas with more of both sources. By isolating areas that are higher in one source than the other, we demonstrate the comparable impacts of traffic and restaurants on LDSA. Ratios of hyperlocal enhancements (ΔLDSA:ΔBC and ΔLDSA:ΔNO2) are higher in commercial neighborhoods than on major roadways, further demonstrating the influence of restaurant emissions on LDSA. We demonstrate the added value of using particle surface in identifying hyperlocal patterns of health-relevant PM components, especially in areas with strong vehicular emissions where the high LDSA does not translate to high PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Material Particulado/análise , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Londres , Emissões de Veículos/análise , Pulmão , Monitoramento Ambiental , Poluição do Ar/análise
2.
Environ Sci Technol ; 54(2): 714-725, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31851821

RESUMO

Mobile sampling studies have revealed enhanced levels of secondary organic aerosol (SOA) in source-rich urban environments. While these enhancements can be from rapidly reacting vehicular emissions, it was recently hypothesized that nontraditional emissions (volatile chemical products and upstream emissions) are emerging as important sources of urban SOA. We tested this hypothesis by using gas and aerosol mass spectrometry coupled with an oxidation flow reactor (OFR) to characterize pollution levels and SOA potentials in environments influenced by traditional emissions (vehicular, biogenic), and nontraditional emissions (e.g., paint fumes). We used two SOA models to assess contributions of vehicular and biogenic emissions to our observed SOA. The largest gap between observed and modeled SOA potential occurs in the morning-time urban street canyon environment, for which our model can only explain half of our observation. Contributions from VCP emissions (e.g., personal care products) are highest in this environment, suggesting that VCPs are an important missing source of precursors that would close the gap between modeled and observed SOA potential. Targeted OFR oxidation of nontraditional emissions shows that these emissions have SOA potentials that are similar, if not larger, compared to vehicular emissions. Laboratory experiments reveal large differences in SOA potentials of VCPs, implying the need for further characterization of these nontraditional emissions.


Assuntos
Poluentes Atmosféricos , Aerossóis , Oxirredução , Emissões de Veículos
3.
Environ Sci Technol ; 52(12): 6798-6806, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29775285

RESUMO

Nucleation is an important source of ambient ultrafine particles (UFP). We present observational evidence of the changes in the frequency and intensity of nucleation events in urban air by analyzing long-term particle size distribution measurements at an urban background site in Pittsburgh, Pennsylvania during 2001-2002 and 2016-2017. We find that both frequency and intensity of nucleation events have been reduced by 40-50% over the past 15 years, resulting in a 70% reduction in UFP concentrations from nucleation. On average, the particle growth rates are 30% slower than 15 years ago. We attribute these changes to dramatic reductions in SO2 (more than 90%) and other pollutant concentrations. Overall, UFP concentrations in Pittsburgh have been reduced by ∼48% in the past 15 years, with a ∼70% reduction in nucleation, ∼27% in weekday local sources (e.g., weekday traffic), and 49% in the regional background. Our results highlight that a reduction in anthropogenic emissions can considerably reduce nucleation events and UFP concentrations in a polluted urban environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado , Pennsylvania
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA