Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560113

RESUMO

Traditional advertising techniques seek to govern the consumer's opinion toward a product, which may not reflect their actual behavior at the time of purchase. It is probable that advertisers misjudge consumer behavior because predicted opinions do not always correspond to consumers' actual purchase behaviors. Neuromarketing is the new paradigm of understanding customer buyer behavior and decision making, as well as the prediction of their gestures for product utilization through an unconscious process. Existing methods do not focus on effective preprocessing and classification techniques of electroencephalogram (EEG) signals, so in this study, an effective method for preprocessing and classification of EEG signals is proposed. The proposed method involves effective preprocessing of EEG signals by removing noise and a synthetic minority oversampling technique (SMOTE) to deal with the class imbalance problem. The dataset employed in this study is a publicly available neuromarketing dataset. Automated features were extracted by using a long short-term memory network (LSTM) and then concatenated with handcrafted features like power spectral density (PSD) and discrete wavelet transform (DWT) to create a complete feature set. The classification was done by using the proposed hybrid classifier that optimizes the weights of two machine learning classifiers and one deep learning classifier and classifies the data between like and dislike. The machine learning classifiers include the support vector machine (SVM), random forest (RF), and deep learning classifier (DNN). The proposed hybrid model outperforms other classifiers like RF, SVM, and DNN and achieves an accuracy of 96.89%. In the proposed method, accuracy, sensitivity, specificity, precision, and F1 score were computed to evaluate and compare the proposed method with recent state-of-the-art methods.


Assuntos
Eletroencefalografia , Emoções , Eletroencefalografia/métodos , Análise de Ondaletas , Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte
2.
Materials (Basel) ; 12(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871140

RESUMO

Broad stopband filters are proposed, based on multilayer electromagnetically induced transparency (EIT) metamaterial structures. The single EIT metamaterial consists of a U-shaped resonator and a strip on a polyimide substrate. The EIT-like spectral feature is firstly utilized to achieve stopband filters by properly coupling two layers of EIT structure. Influences of different rotation angles on the transmission properties of the two-layer EIT structure are investigated. It is found the wider low-transmission band can be obtained for the Transverse Magnetic (TM) polarization when the two EIT metal structures are vertical to each other. Furthermore, the bandwidth of the stopband can be controlled by increasing layers of the EIT structures with the proper architectural design. The design using a coupling effect of multi EIT-like resonances in the metamaterial would provide a new method for broad stopband filters in highly integrated optical circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA