Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 250: 121035, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154339

RESUMO

Membrane bioreactors (MBRs) play a crucial role in wastewater treatment, but they face considerable challenges due to fouling. To tackle this issue, innovative strategies are needed. This study investigated the effectiveness of membrane reciprocation and quorum quenching (QQ) to control fouling in MBRs. The study compared MBRs using membrane reciprocation (30 rpm) and QQ (injecting media containing 100 or 200 mg/L BH4) with conventional MBRs employing different air-scouring intensities. The results demonstrated that combining membrane reciprocation (30 rpm) with QQ (200 mg/L BH4) significantly extended the service time of MBRs, making it approximately six times longer than conventional methods. Moreover, this approach reduced physically reversible resistance. The reduction in signal molecules related to biofouling due to QQ showcased its critical role in controlling biofouling, even under high shear caused by membrane reciprocation. However, the impact of QQ on microbial community structure appeared relatively insignificant when compared to factors such as operation time, aeration intensity, and membrane reciprocation. By combining membrane reciprocation and QQ, the study achieved a remarkable 81 % energy saving compared to extensive aeration (103 s-1 in velocity gradient), in addition to the extended service time. Importantly, this combined antifouling approach did not negatively affect microbial characteristics and wastewater treatment, emphasizing its effectiveness in MBRs. Overall, the findings of this study offer valuable insights for developing synergistic fouling control strategies in MBRs, significantly improving the energy efficiency of the wastewater treatment process.


Assuntos
Incrustação Biológica , Purificação da Água , Percepção de Quorum , Membranas Artificiais , Incrustação Biológica/prevenção & controle , Reatores Biológicos , Purificação da Água/métodos
2.
Bioresour Technol ; 363: 127930, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261999

RESUMO

Anaerobic membrane bioreactors (AnMBRs) enhance carbon neutrality with biomethane recovery from wastewater; however, microbial signaling, which may affect biological performances, was poorly understood. Here, we thus evaluate quorum sensing (QS) dynamics while monitoring acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2) levels during long-term AnMBR operations after sludge inoculation. Significant organic removal and methane production were achieved with the reactor startup. Signal molecule levels varied with transient organic loading rates, depending on their types. A starving condition may cause an increase in short- and medium-chain AHLs and AI-2. Biopolymers, biosolids, volatile fatty acids, and alkalinity levels had positive correlations with short- and medium-chain AHLs and AI-2, whereas methane production had positive correlations with long-chain AHLs. The principal component analysis of QS signal composition and biological performance data explains their interconnectivity. The findings of this study help to understand that QS signals regulate metabolic pathways in addition to microbial group behaviors.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Esgotos , Águas Residuárias , Anaerobiose , Biossólidos , Reatores Biológicos , Metano , Carbono
3.
Membranes (Basel) ; 12(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323771

RESUMO

Bacterial quorum quenching (QQ) media with various structures (e.g., bead, cylinder, hollow cylinder, and sheet), which impart biofouling mitigation in membrane bioreactors (MBRs), have been reported. However, there has been a continuous demand for membranes with QQ capability. Thus, herein, we report a novel double-layered membrane comprising an outer layer containing a QQ bacterium (BH4 strain) on the polysulfone hollow fiber membrane. The double-layered composite membrane significantly inhibits biofilm formation (i.e., the biofilm density decreases by ~58%), biopolymer accumulation (e.g., polysaccharide), and signal molecule concentration (which decreases by ~38%) on the membrane surface. The transmembrane pressure buildup to 50 kPa of the BH4-embedded membrane (17.8 h ± 1.1) is delayed by more than thrice (p < 0.05) of the control with no BH4 in the membrane's outer layer (5.5 h ± 0.8). This finding provides new insight into fabricating antibiofouling membranes with a self-regulating property against biofilm growth.

4.
Bioresour Technol ; 308: 123269, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32251857

RESUMO

Quorum quenching (QQ), the disruption of microbial communication, has proven to be effective as an innovative anti-biofouling strategy for membrane bioreactors (MBRs). However, QQ bacteria for anaerobic environments have not been extensively analyzed in previous research. This study thus investigated facultative QQ bacterial strains that exhibit potential for use in aerobic and anaerobic MBRs. Two novel QQ strains from the genus Pseudomonas (KS2 and KS10) were isolated from anaerobic digester sludge using signal molecules as the sole carbon source. The two QQ strains exhibited significant signal molecule degradation depending on the oxygen levels and demonstrated endogenous QQ activity, with KS2 producing lactonase and KS10 producing acylase. The QQ strains significantly reduced the formation of the biofilm generated by both Pseudomonas aeruginosa (PAO1) and real sludge. Facultative QQ strains have the potential to offer a more flexible option for effective biofouling control in both aerobic and anaerobic MBRs.


Assuntos
Incrustação Biológica , Bactérias , Biofilmes , Reatores Biológicos , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA