Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 367: 737-767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325716

RESUMO

Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies. With the improvement in real-time imaging technologies and tools for direct access to tumor lesions, the clinical applicability of locoregional drug delivery is becoming more prominent. Theoretically, locoregional treatments can bypass challenges faced by systemic drug delivery. Preclinically, locoregional delivery of drugs has demonstrated enhanced therapeutic efficacy with limited off-target effects while still yielding an abscopal effect. Clinically, an array of locoregional strategies is under investigation for the delivery of drugs ranging in target and size. Locoregional tumor treatment strategies can be classified into two main categories: 1) direct drug infusion via injection or implanted port and 2) extended drug elution via injected or implanted depot. The number of studies investigating locoregional drug delivery strategies for cancer treatment is rising exponentially, in both preclinical and clinical settings, with some approaches approved for clinical use. Here, we highlight key preclinical advances and the clinical relevance of such locoregional delivery strategies in the treatment of cancer. Furthermore, we critically analyze 949 clinical trials involving locoregional drug delivery and discuss emerging trends.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Injeções
2.
Sci Transl Med ; 16(728): eadk5413, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170792

RESUMO

The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Camundongos , Suínos , Gadolínio , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Concussão Encefálica/patologia , Macrófagos/patologia
3.
PNAS Nexus ; 3(1): pgad434, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38187808

RESUMO

Traumatic brain injury (TBI) is a debilitating disease with no current therapies outside of acute clinical management. While acute, controlled inflammation is important for debris clearance and regeneration after injury, chronic, rampant inflammation plays a significant adverse role in the pathophysiology of secondary brain injury. Immune cell therapies hold unique therapeutic potential for inflammation modulation, due to their active sensing and migration abilities. Macrophages are particularly suited for this task, given the role of macrophages and microglia in the dysregulated inflammatory response after TBI. However, maintaining adoptively transferred macrophages in an anti-inflammatory, wound-healing phenotype against the proinflammatory TBI milieu is essential. To achieve this, we developed discoidal microparticles, termed backpacks, encapsulating anti-inflammatory interleukin-4, and dexamethasone for ex vivo macrophage attachment. Backpacks durably adhered to the surface of macrophages without internalization and maintained an anti-inflammatory phenotype of the carrier macrophage through 7 days in vitro. Backpack-macrophage therapy was scaled up and safely infused into piglets in a cortical impact TBI model. Backpack-macrophages migrated to the brain lesion site and reduced proinflammatory activation of microglia in the lesion penumbra of the rostral gyrus of the cortex and decreased serum concentrations of proinflammatory biomarkers. These immunomodulatory effects elicited a 56% decrease in lesion volume. The results reported here demonstrate, to the best of our knowledge, a potential use of a cell therapy intervention for a large animal model of TBI and highlight the potential of macrophage-based therapy. Further investigation is required to elucidate the neuroprotection mechanisms associated with anti-inflammatory macrophage therapy.

4.
PNAS Nexus ; 2(10): pgad317, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37901442

RESUMO

Subcutaneous (subQ) injection is a common route for delivering biotherapeutics, wherein pharmacokinetics is largely influenced by drug transport in a complex subQ tissue microenvironment. The selection of good drug candidates with beneficial pharmacokinetics for subQ injections is currently limited by a lack of reliable testing models. To address this limitation, we report here a Subcutaneous Co-Culture Tissue-on-a-chip for Injection Simulation (SubCuTIS). SubCuTIS possesses a 3D coculture tissue architecture, and it allows facile quantitative determination of relevant scale independent drug transport rate constants. SubCuTIS captures key in vivo physiological characteristics of the subQ tissues, and it differentiates the transport behavior of various chemically distinct molecules. We supplemented the transport measurements with theoretical modeling, which identified subtle differences in the local absorption rate constants of seven clinically available mAbs. Accounting for first-order proteolytic catabolism, we established a mathematical framework to assess clinical bioavailability using the local absorption rate constants obtained from SubCuTIS. Taken together, the technology described here broadens the applicability of organs-on-chips as a standardized and easy-to-use device for quantitative analysis of subQ drug transport.

5.
J Control Release ; 352: 1093-1103, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351520

RESUMO

Various anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications. Here, we report targeted delivery of bromelain into tumor tissues through its covalent attachment to a hyaluronic acid (HA)-peptide conjugate with tumor ECM targeting ability. The ECM targeting peptide, collagen type IV-binding peptide (C4BP), was chosen from six candidate-peptides based on their ability to bind to frozen sections of triple-negative breast cancer, 4T1 tumor ex vivo. The HA- C4BP conjugate showed a significant increase in tumor accumulation in 4T1-bearing mice after intravenous administration compared to unmodified HA. We further demonstrated that the systemic administration of bromelain conjugated C4BP-HA (C4BP-HA-Bro) potentiates the anti-tumor efficacy of liposomal doxorubicin. C4BP-HA-Bro decreased the number and length of collagen fibers and improved the distribution of doxorubicin within the tumor. No infusion reaction was noted after delivery of C4BP-HA-Bro. C4BP-HA thus offers a potential for effective and safe delivery of bromelain for improved intratumoral delivery of therapeutics.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Lipossomos/uso terapêutico , Bromelaínas/uso terapêutico , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácido Hialurônico/uso terapêutico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Matriz Extracelular , Linhagem Celular Tumoral
6.
J Control Release ; 345: 512-536, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337939

RESUMO

Many efforts have been made to achieve targeted delivery of anticancer drugs to enhance their efficacy and to reduce their adverse effects. These efforts include the development of nanomedicines as they can selectively penetrate through tumor blood vessels through the enhanced permeability and retention (EPR) effect. The EPR effect was first proposed by Maeda and co-workers in 1986, and since then various types of nanoparticles have been developed to take advantage of the phenomenon with regards to drug delivery. However, the EPR effect has been found to be highly variable and thus unreliable due to the complex tumor microenvironment. Various physical and pharmacological strategies have been explored to overcome this challenge. Here, we review key advances and emerging concepts of such EPR-enhancing strategies. Furthermore, we analyze 723 clinical trials of nanoparticles with EPR enhancers and discuss their clinical translation.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Permeabilidade , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA