Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
J Environ Manage ; 359: 121037, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714039

RESUMO

Russia ranks among the top five countries worldwide in terms of carbon emissions, with the energy, transportation, and manufacturing sectors as the major contributors. This poses a significant threat to both current and future generations. Russia faces challenges in achieving Sustainable Development Goal 13, necessitating the implementation of more innovative policies to promote environmental sustainability. Considering this alarming situation, this study investigates the role of financial regulations, energy price uncertainty, and climate policy uncertainty in reshaping sectoral CO2 emissions in Russia. This study utilizes a time-varying bootstrap rolling-window causality (BRW) approach using quarterly data from 1990 to 2021. The stability test for parameters indicates instability, suggesting that the full sample causality test may yield incorrect inferences. Thus, the BRW approach is employed for valid inferences. Our findings confirm the time-varying negative impact of financial regulations on CO2 emissions from energy, manufacturing, and transportation sectors. Additionally, findings confirm time-varying positive impact of energy prices and climate policy uncertainty on CO2 emissions from the energy, manufacturing, and transportation sectors. Strong financial regulations and stable energy and climate policies are crucial for achieving sustainability, highlighting significant policy implications for policymakers and stakeholders.


Assuntos
Dióxido de Carbono , Incerteza , Dióxido de Carbono/análise , Meios de Transporte , Mudança Climática , Política Ambiental , Desenvolvimento Sustentável , Federação Russa
2.
J Environ Manage ; 359: 121036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718603

RESUMO

Researchers have shown a growing interest in investigating the environmental consequences of energy exploitation and green technologies, particularly in light of the escalating severity of climate change issues in recent times. However, these researches remain incomplete in terms of the various elements and mechanisms of impact. By assessing the novel facet of resource diversification, this study has assessed the direct and indirect effects of this feature on environmental quality. This study used the Moment quantile Regression technique to examine data from 31 OECD nations spanning the time frame of 2009-2019. The findings indicate that resource diversification has an adverse effect on environmental quality, however this effect is not homogeneously observed across all countries. Countries with favorable environmental conditions will encounter a more pronounced influence from the diversification of natural resources extraction. This study further demonstrates that expanding the variety of natural resource exploitation will amplify the negative effects of resource exploitation on environmental quality. Furthermore, the degree of environmental technology exerts a beneficial impact on environmental quality across various degrees of environmental quality. Our findings offer several insightful policies for natural resources management in the context of the ongoing industrial revolution.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Recursos Naturais , Tecnologia , Meio Ambiente
3.
Plant Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720541

RESUMO

Mungbean, Vigna radia (L.) R. Wilczek, is ranked 2nd next to chickpea (Cicer arietinum) in total cultivation and production in Pakistan. In August of 2022 and 2023, mungbean plants (cv. PRI Mung-2018) were found wilting in a field at the Ayub Agricultural Research Institute, Faisalabad, Pakistan. Wilted leaves turned yellow, died, but remained attached to the stem. Vascular tissue at the base of the stem showed light to dark brown discoloration. Roots were stunted with purplish brown to black discoloration. Symptomatic mungbean plants were collected from fields at five different locations (20 samples/location). Disease incidence was similar among the five fields, ranging from 5 to 10% at each location depending upon type of germplasm and date of sowing. For fungal isolation and morphological identification, symptomatic stem and root tissues were cut into ~5 mm2 pieces with a sterilized blade. Tissues were surface-sterilized for one min in a 0.5% sodium hypochlorite solution, rinsed twice in sterilized water, air dried on sterilized filter paper, and aseptically placed on potato dextrose agar (PDA) containing 0.5 g/L-1 streptomycin sulphate. Plates were incubated for 3-4 days at 25 ± 2°C with a 12-h photoperiod. Single-spore cultures were used for morphological and molecular analyses. Isolates on PDA grew rapidly and produced abundant white aerial mycelium that turned off-white to beige with age. Macroconidia were hyaline, falcate, typically 3-to-6 septate with a pointed apical cell and a foot-shaped basal cell, measuring 24.5-49.5 x 2.7-4.7 µm (n = 40). Globose to obovate chlamydospores measuring 5.8 ± 0.5 µm (n = 40) were produced singly or in chains and were intercalary or terminal and possessed roughened walls. The morphological data indicated the isolates were members of the genus Fusarium (Leslie and Summerell 2006). To obtain a species-level identification, a portion of translation elongation factor 1-α (TEF1), the largest subunit of RNA polymerase (RPB1), and the second largest subunit of RNA polymerase (RPB2) region were PCR amplified and sequenced using EF1/EF2 (O'Donnell et al. 1998), Fa/G2R (Hofstetter et al. 2007), and 5f2/7cr (Liu et al. 1999) primers, respectively. DNA sequences of these genes were deposited in GenBank under accession numbers MW059021, MW059017 and MW059019, respectively. The partial TEF1, RPB1 and RPB2 sequences were queried against the Fusarium MLST database (https://fusarium.mycobank.org/page/Fusarium_identification), using the polyphasic identification tool. The BLASTn search revealed 99.9% identity of the isolate to F. nanum (Xia et al. 2019), formerly FIESC 25 of the F. incarnatum-equiseti species complex (MRC 2610, NRRL 54143; O'Donnell et al. 2018). To confirm pathogenicity, roots of 3-5 leaf stage mungbean seedlings were soaked in a 106 spores ml-1 conidial suspension of the fungus for 15 min and then planted in 10 cm pots containing sterilized soil. Mock-inoculated plants with sterile water served as a negative control. Twenty pots that were used for each inoculated and control treatment were maintained at 25 ± 2°C, 14:8 h photoperiod, and 80% relative humidity in a growth chamber. After 15 days, leaf yellowing, internal browning from the base of stems and root discoloration was observed in all the inoculated plants. The uninoculated negative control plants remained asymptomatic. Fusarium nanum was re-isolated from artificially inoculated plants and identified by colony growth, conidial characteristics on PDA and molecular analyses (TEF1). To our knowledge, this is the first report of wilt caused by F.nanum on mungbean in Pakistan. In Pakistan, mungbean cultivation in irrigated areas has increased in recent years. It has been introduced frequently in citrus orchards, crop rotation of maize and sesame, intercropping with sugarcane and as green manure. However, citrus, maize, sesame and sugarcane are also hosts of Fusarium spp. Therefore, this information warrants sustainable crop protection and may have an impact on further interaction of F. nanum with other wilt pathogens.

4.
J Environ Manage ; 360: 121091, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761617

RESUMO

In an exploration of environmental concerns, this groundbreaking research delves into the relationship between GDP per capita, coal rents, forest rents, mineral rents, oil rents, natural gas rents, fossil fuels, renewables, environmental tax and environment-related technologies on CO2 emissions in 30 highly emitting countries from 1995 to 2021 using instrumental-variables regression Two-Stage least squares (IV-2SLS) regression and two-step system generalized method of moments (GMM) estimates. Our results indicate a significant positive relationship between economic growth and CO2 emissions across all quantiles, showcasing an EKC with diminishing marginal effects. Coal rents exhibit a statistically significant negative relationship with emissions, particularly in higher quantiles, and mineral rents show a negative association with CO2 emissions in lower and middle quantiles, reinforcing the idea of resource management in emissions reduction. Fossil fuels exert a considerable adverse impact on emissions, with a rising effect in progressive quantiles. Conversely, renewable energy significantly curtails CO2 emissions, with higher impacts in lower quantiles. Environmental tax also mitigates CO2 emissions. Environment-related technologies play a pivotal role in emission reduction, particularly in lower and middle quantiles, emphasizing the need for innovative solutions. These findings provide valuable insights for policymakers, highlighting the importance of tailoring interventions to different emission levels and leveraging diverse strategies for sustainable development.

5.
J Environ Manage ; 360: 121174, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759557

RESUMO

Every nation on earth has the responsibility to implement effective environmental management measures for sustainable environmental quality. In doing so, this study scrutinizes the relationship between economic globalisation and energy diversification in the Chinese economy from 1995 to 2022 for designing and implanting policies for environmental management. It uses industrialization, foreign direct investment, foreign remittances, and information & communication technology as supplementary factors into augmented energy diversification demand function. This empirical analysis shows cointegration between the variables, with economic globalisation positively impacting energy diversification. Factors such as foreign direct investment, foreign remittances, and information & communication technology contribute to energy diversity. However, industrialization has an adverse relationship with energy diversification. The relationship forms an inverted-U shaped between economic globalization and energy diversification. Our causality analysis indicates that economic globalization positively causes energy diversification. This study also reveals a reciprocal and beneficial cause-and-effect association between foreign direct investment and energy diversification. Lastly, foreign remittances and information & communication technologies positively cause energy diversification.

6.
J Environ Manage ; 359: 120971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677233

RESUMO

Consistent with the increasing environmental interest, the clean energy transition is highly critical to achieving decarbonization targets. Also, energy security has become an important topic under the shadow of the energy crisis,. Accordingly, countries have been trying to stimulate clean energy use to preserve the environment and ensure energy security. So, considering the leading role of economic size and volume of energy use, the study examines the USA to define whether energy transition helps decrease energy security risk (ESR) and curb CO2 emissions. So, the study applies a disaggregated level analysis by performing quantile-based models for the period from 2001/Q1 through 2022/Q4. The results demonstrate that (i) the energy transition index decreases environmental ESR at higher quantiles and reliability ESR at lower and middle quantiles, whereas it is not beneficial in declining economic and geopolitical ESR; (ii) energy transition curbs CO2 emissions in building and transport sectors at lower quantiles, whereas it does not help decrease CO2 emissions in industrial and power sectors; (iii) energy transition is mostly ineffective on ESR, whereas it is highly effective in curbing CO2 emissions in all sectors except for transport across various quantiles as time passes; (iv) the results differ according to the aggregated and disaggregated levels; (v) the results are consistent across main and alternative models. Hence, the study highlights the dominant effect of energy transition in curbing sectoral CO2 emissions rather than easing ESR. Accordingly, the study discusses various policy implications for the USA.


Assuntos
Dióxido de Carbono , Dióxido de Carbono/análise , Estados Unidos , Modelos Teóricos
7.
BMC Plant Biol ; 24(1): 247, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575856

RESUMO

Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).


Assuntos
Antioxidantes , Ácido Ascórbico , Antioxidantes/metabolismo , Pisum sativum , Espécies Reativas de Oxigênio , Clorofila A , Peroxidação de Lipídeos , Cloreto de Sódio/farmacologia , Estresse Salino
8.
PeerJ Comput Sci ; 10: e1952, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660164

RESUMO

The progress of the digital economy has promoted the enterprise accounting system. To accelerate the update and evolution of accounting systems, we propose a parameter selection method based on multi-objective optimization and genetic algorithm. Firstly, this article proposes an accounting feature extraction method based on multimodal information embedding. The dual-branch structure and feature pyramid network are used to realize the feature extraction of the information involved in accounting. Then, this article proposes a multi-objective parameter selection method based on a parallel genetic algorithm. By embedding a genetic algorithm in the process of dual-branch model training, the model's ability to sense accounting information is improved. Finally, using the above two methods, an accounting system evaluation method upon recurrent Transformer is proposed to improve the financial situation of enterprises. Our experiments have proven that our approach attains a remarkable performance with an 87.6% F-value, 83.5% mAP value, and 83.4% accuracy. These results position our method at an advanced level globally, showcasing its capability to enhance accounting systems.

10.
RSC Adv ; 14(14): 9819-9847, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38528922

RESUMO

Cobalt is an essential metal to maintain several functions in the human body and is present in functional materials for numerous applications. Thus, to monitor these functions, it is necessary to develop suitable probes for the detection of cobalt. Presently, researchers are focused on designing different chemosensors for the qualitative and quantitative detection of the metal ions. Among the numerous methods devised for the identification of cobalt ions, colorimetric and fluorimetric techniques are considered the best choice due to their user-friendly nature, sensitivity, accuracy, linearity and robustness. In these techniques, the interaction of the analyte with the chemosensor leads to structural changes in the molecule, causing the emission and excitation intensities (bathochromic, hyperchromic, hypochromic, and hypsochromic) to change with a change in the concentration of the analyte. In this review, the recent advancements in the fluorimetric and colorimetric detection of cobalt ions are systematically summarized, and it is concluded that the development of chemosensors having distinctive colour changes when interacting with cobalt ions has been targeted for on-site detection. The chemosensors are grouped in various categories and their comparison and the discussion of computational studies will enable readers to have a quick overview and help in designing effective and efficient probes for the detection of cobalt in the field of chemo-sensing.

11.
IUCrJ ; 11(Pt 2): 224-236, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427455

RESUMO

Leishmaniasis is a neglected parasitic tropical disease with numerous clinical manifestations. One of the causative agents of cutaneous leishmaniasis (CL) is Leishmania tropica (L. tropica) known for causing ulcerative lesions on the skin. The adverse effects of the recommended available drugs, such as amphotericin B and pentavalent antimonial, and the emergence of drug resistance in parasites, mean the search for new safe and effective anti-leishmanial agents is crucial. Miltefosine (MIL) was the first recommended oral medication, but its use is now limited because of the rapid emergence of resistance. Pharmaceutical cocrystallization is an effective method to improve the physicochemical and biological properties of active pharmaceutical ingredients (APIs). Herein, we describe the cocrystallization of coumarin-3-carboxylic acid (CU, 1a; 2-oxobenzopyrane-3-carboxylic acid, C10H6O4) with five coformers [2-amino-3-bromopyridine (1b), 2-amino-5-(trifluoromethyl)-pyridine (1c), 2-amino-6-methylpyridine (1d), p-aminobenzoic acid (1e) and amitrole (1f)] in a 1:1 stoichiometric ratio via the neat grinding method. The cocrystals 2-6 obtained were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis, as well as Fourier transform infrared spectroscopy. Non-covalent interactions, such as van der Waals, hydrogen bonding, C-H...π and π...π interactions contribute significantly towards the packing of a crystal structure and alter the physicochemical and biological activity of CU. In this research, newly synthesized cocrystals were evaluated for their anti-leishmanial activity against the MIL-resistant L. tropica and cytotoxicity against the 3T3 (normal fibroblast) cell line. Among the non-cytotoxic cocrystals synthesized (2-6), CU:1b (2, IC50 = 61.83 ± 0.59 µM), CU:1c (3, 125.7 ± 1.15 µM) and CU:1d (4, 48.71 ± 0.75 µM) appeared to be potent anti-leishmanial agents and showed several-fold more anti-leishmanial potential than the tested standard drug (MIL, IC50 = 169.55 ± 0.078 µM). The results indicate that cocrystals 2-4 are promising anti-leishmanial agents which require further exploration.


Assuntos
Antiprotozoários , Leishmania tropica , Leishmaniose Cutânea , Humanos , Antiprotozoários/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Cristalografia por Raios X , Cumarínicos/farmacologia
12.
Environ Sci Pollut Res Int ; 31(13): 20343-20361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372919

RESUMO

Sub-Saharan African nations face multifaceted environmental problems, especially those associated with carbon discharges. Hence, this study calculates a composite carbon index in the context of 39 developing nations from this region and uses it as a proxy for the carbon emission-related environmental problems they have faced during the 2000-2020 period. This index is estimated by utilizing data regarding annual carbon dioxide discharges, output-based carbon productivity rates, and energy consumption-based carbon intensity levels in the concerned countries. Hence, policy takeaways from this study have critical relevance for the selected sub-Saharan African nations to help them achieve the objectives related to the Sustainable Development Goals agenda and the Paris Accord. Overall, the findings from the econometric analyses verify that more receipt of foreign direct investment initially raises but later on reduces environmental problems. Thus, the nexus concerning these variables depicts an inverse U-shape. Besides, the results endorse that greening the energy consumption structures of the sampled sub-Saharan African countries helps to abate their environmental problems in the long run while financial development aggravates the extent of environmental adversities that take place. Lastly, improving the quality of regulatory agencies enables the Sub-Saharan African nations to further mitigate their environmental problems. Moreover, these aforementioned findings are observed to be heterogeneous across low- and middle-income categories of the selected Sub-Saharan African countries. Furthermore, the heterogeneity of the findings is also confirmed by the outcomes derived from the country-specific analyses. Nevertheless, these nations should attract clean energy-embodying foreign direct investment, make their energy consumption structures greener by amplifying renewable energy adoption rates, introduce green funds to develop their financial sectors, and make their environmental regulatory agencies more transparent with their activities.


Assuntos
Países em Desenvolvimento , Desenvolvimento Econômico , África Subsaariana , Energia Renovável , Internacionalidade , Investimentos em Saúde , Dióxido de Carbono/análise
13.
Environ Sci Pollut Res Int ; 31(15): 22410-22430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407706

RESUMO

Realizing the coordination between the economic and environmental systems through a green growth model is an important goal for China to enter the high-quality development stage. Meanwhile, financial technology (fintech) is rapidly developing in China. To explore the relationship between the two, this research uses panel data from 276 cities in China from 2011 to 2022 and empirically tests through constructing econometric models and machine learning algorithms. The empirical result shows that fintech has an impact on green growth. Specifically, there is a U-shaped relationship between fintech and green growth, meaning that before a certain stage, fintech may have a certain inhibitory effect on green growth. After fintech exceeds a certain development level, it will promote the improvement of green growth. Further mediation tests show that innovation plays a mediating role in the impact of fintech on green growth. Additionally, this research also conducts consistency tests based on different criteria including the location, scale, and financial development level of cities. Based on the research findings, policy suggestions are proposed in this paper to promote the development of fintech and stimulate the growth of the green economy. Overall, our research sheds more light on the fintech-green growth linkage and provides new insights into comprehending the role of fintech in advancing towards a low-carbon economy.


Assuntos
Algoritmos , Carbono , Modelos Econométricos , China , Cidades , Aprendizado de Máquina , Desenvolvimento Econômico
14.
J Biomol Struct Dyn ; : 1-21, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344816

RESUMO

Mango (Mangifera indica L.) is one of the most important fruit crops in the world with yields of approximately 40 million tons annually and its production continues to decrease every year as a result of the attack of certain pathogens i.e. Colletotrichum gloeosporioides, Erythricium salmonicolor, Amritodus atkinsoni, Idioscopus clypealis, Idioscopus nitidulus, Bactrocera obliqua, Bactrocera frauenfeldi, Xanthomonas campestris, and Fusarium mangiferae. So F. mangiferae is the most harmful pathogen that causes mango malformation disease in mango which decreases its 90% yield. Nanotechnology is an eco-friendly and has a promising effect over traditional methods to cure fungal diseases. Different nanoparticles possess antifungal potential in terms of controlling the fungal diseases in plants but applications of nanotechnology in plant disease managements is minimal. The main focus of this review is to highlight the previous and current strategies to control mango malformation and highlights the promising applications of nanomaterials in combating mango malformation. Hence, the present review aims to provide brief information on the disease and effective management strategies.Communicated by Ramaswamy H. Sarma.

15.
Funct Integr Genomics ; 24(2): 34, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365972

RESUMO

Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.


Assuntos
Biofortificação , Fome , Biofortificação/métodos , Melhoramento Vegetal , Produtos Agrícolas/genética , Solo
16.
Environ Sci Pollut Res Int ; 31(12): 18683-18700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347364

RESUMO

Climate change effect mitigation is a critical priority for top leaders and communities around the globe. Human-induced environmental issues are affecting humankind's standard of living and development potential and the planetary boundaries. Sustainability objectives aim to enhance environmental quality and ensure sustainable development for all by eliminating social inequalities. This study examines the complex relationships between demographic features, foreign direct investment, technological innovation, and ecological footprint, emphasizing the relevance of population aging, population density, and urbanization in this context. The research uses a selection of emerging European economies during 1995-2018. The reasons for countries' selection are related to the increasing rate of population aging in European countries, the attractiveness for foreign direct investment, the economic growth, and the technological advancement potential these emerging countries possess. In order to investigate the long-run relationship between the selected variables, the study tests the cross-section dependence, homogeneity, and cointegration and uses Konya tests to determine panel causality. Based on Konya methodology, differences between countries in the panel are evidenced and discussed accordingly. Our findings confirm the long-run relationship between environment, technological innovation, population aging, and FDI. The results of this research are highly relevant for policymakers in selected countries for identifying the set of correlations and the relevance of various variables in such national economies. Demographic features such as population aging and population density are critical for Europe, and the results show the impact on the ecological footprint.


Assuntos
Dióxido de Carbono , Invenções , Humanos , Desenvolvimento Econômico , Investimentos em Saúde , Demografia
17.
Front Pharmacol ; 15: 1260603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323083

RESUMO

Background: Wendan Decoction (WDD) is a six-herb Chinese medicine recipe that was first mentioned in about 652 AD. It is frequently used to treat hyperlipidemic patients' clinical complaints. According to reports, oxidative stress has a significant role in hyperlipidemia. Purpose: There has not yet been a thorough pharmacokinetic-pharmacodynamic (PK-PD) examination of the clinical efficacy of WDD in the context of hyperlipemia-related oxidative stress. Therefore, the goal of this research is to explore the antioxidant essence of WDD by developing a PK-PD model, ordering to assure its implication in treating hyperlipidemia in medical practice. Methods: The model rats of foodborne hyperlipidemia were established by feeding with high-fat feed, and the lipid-lowering effect of WDD was explored. The plasma drug concentration of rats at different doses were measured by UPL-MS/MS technology, and PK parameters were calculated using Phoenix WinNonlin 8.1 software. The level of lipid peroxide (LPO) in plasma at different time points was measured by enzyme labeling instrument. Finally, the PK-PD model was established by using Phoenix WinNonlin 8.1 software, to explore the lipid-lowering effect of WDD and the relation between the dynamic changes of chemical components and antioxidant effect. Results: The findings suggested that, WDD can reduce the levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in plasma, and high-density lipoprotein cholesterol (HDL-C) was related to the dosage. Between the peak drug levels and the WDD's maximal therapeutic response, there existed a hysteresis. WDD's effect-concentration curves displayed a counterclockwise delaying loop. Alternatively, among the ten components of WDD, hesperetin, quercetin, naringenin and tangeretin might exert more significant effects in regulating the LPO levels in hyperlipidemic rats. Conclusion: This study can be helpful for other investigators to study the lipid-lowering effect of WDD.

18.
Environ Res ; 249: 118451, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341073

RESUMO

Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.


Assuntos
COVID-19 , Mucosa Olfatória , Material Particulado , SARS-CoV-2 , Material Particulado/toxicidade , Humanos , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/virologia , COVID-19/imunologia , Poluentes Atmosféricos/toxicidade , Idoso , Masculino , Feminino , Doença de Alzheimer/imunologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/virologia , Pessoa de Meia-Idade , Citocinas/metabolismo , Idoso de 80 Anos ou mais , Estresse Oxidativo/efeitos dos fármacos
19.
Heliyon ; 10(4): e25510, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390139

RESUMO

Thiourea (TU) is considered an essential and emerging biostimulant against the negative impacts of severe environmental stresses, including drought stress in plants. However, the knowledge about the foliar application of TU to mitigate drought stress in Linum usitatissimum L., has yet to be discovered. The present study was designed to assess the impact of foliar application of TU for its effects against drought stress in two flax cultivars. The study comprised two irrigation regimes [60% field capacity (FC) and the control (100% FC)], along with TU (0, 500, 1000 mg L-1) application at the vegetative stage. The findings indicated that drought stress reduced the shoot fresh weight (44.2%), shoot dry weight (67.5%), shoot length (41.5%), total chlorophyll (51.6%), and carotenoids (58.8%). Drought stress increased both cultivars' hydrogen peroxide (H2O2) and malondialdehyde (MDA). Foliar application of TU (1000 mg L-1) enhanced the growth and chlorophyll contents with or without drought stress. Under drought stress (60% FC), TU decreased MDA and H2O2 contents up to twofold. Moreover, TU application increased catalase (40%), peroxidase (13%), superoxide dismutase (30%), and total soluble protein contents (32.4%) differentially in both cultivars. Nevertheless, TU increased calcium (Ca2+) (42.8%), potassium (K+) (33.4%), and phosphorus (P) (72%) in shoots and decreased the elevated sodium (Na+) (28.2%) ions under drought stress. It is suggested that TU application (1000 mg L-1) enhances the growth potential of flax by enhancing photosynthetic pigment, nutrient uptake, and antioxidant enzymes under drought stress. Research outcomes, therefore, recommend that TU application can ameliorate drought-induced negative effects in L. usitatissimum L. seedlings, resulting in improved plant growth and mineral composition, as depicted by balanced primary and secondary metabolite accumulation.

20.
Front Cell Infect Microbiol ; 14: 1270060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410722

RESUMO

Background: Malaria has always been a serious infectious disease prevalent in the world. Antimalarial drugs such as chloroquine and artemisinin have been the main compounds used to treat malaria. However, the massive use of this type of drugs accelerates the evolution and spread of malaria parasites, leading to the development of resistance. A large number of related data have been published by researchers in recent years. CiteSpace software has gained popularity among us researchers in recent years, because of its ability to help us obtain the core information we want in a mass of articles. In order to analyze the hotspots and develop trends in this field through visual analysis, this study used CiteSpace software to summarize the available data in the literature to provide insights. Method: Relevant literature was collected from the Web of Science Core Collection (WOSCC) from 1 January 2015 to 29 March 2023. CiteSpace software and Microsoft Excel were used to analyze and present the data, respectively. Results: A total of 2,561 literatures were retrieved and 2,559 literatures were included in the analysis after the removal of duplicates. An irrefutable witness of the ever-growing interest in the topic of antimalarial drug resistance could be expressed by the exponentially increased number of publications and related citations from 2015 to 2022, and its sustained growth trend by 2023. During the past 7 years, USA, Oxford University, and David A Fidock are the country, institution, and author with the most publications in this field of research, respectively. We focused on the references and keywords from literature and found that the research and development of new drugs is the newest hotspot in this field. A growing number of scientists are devoted to finding new antimalarial drugs. Conclusion: This study is the first visual metrological analysis of antimalarial drug resistance, using bibliometric methods. As a baseline information, it is important to analyze research output published globally on antimalarial drug resistance. In order to better understand the current research situation and future research plan agenda, such baseline data are needed accordingly.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Bibliometria , Malária/tratamento farmacológico , Malária/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA