Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38668840

RESUMO

Synthesis of metal oxide nanomaterials using phytochemicals has now been regarded as mutually exclusive to chemical synthesis techniques. Here, we have extracted, isolated, and characterized the phytochemicals of Euphorbia cognata Boiss leaf hydro-organic extract and utilized them as biofuel in the preparation of metal oxide nanoparticles (CoO NPs). To evaluate the chemical composition of bio templates, chromatographic techniques like high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS) were being utilized. The reducing properties of the organic fuel were investigated by efficiently synthesizing CoO NPs by treating aqueous plant extract with an aqueous complex of Co(NO3)·6H2O. X-ray diffraction (XRD) was utilized for identification of newly prepared NPs, and composition of elements was inveterate via energy dispersive X-ray spectroscopy (EDX). The spherical-shaped morphology was noticed via field emission-scanning electron microscopy (FE-SEM), and the biocomponents of synthesized metal oxide were identified by GC-MS which has confirmed the active presence of monopolized octodrine, decanoic acid, cathinone, and acetic acid in the synthesized metal oxides NPs. Overall, the present study has demonstrated well the significant potential of E. cognata phytocompounds as fuel in the synthesis of nanomaterial.

2.
ChemSusChem ; : e202400283, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470130

RESUMO

MXenes, a two-dimensional (2D) material, exhibit excellent optical, electrical, chemical, mechanical, and electrochemical properties. Titanium-based MXene (Ti-MXene) has been extensively studied and serves as the foundation for 2D MXenes. However, other transition metals possess the potential to offer excellent properties in various applications. This comprehensive review aims to provide an overview of the properties, challenges, key findings, and applications of less-explored vanadium-based MXenes (V-MXenes) and their composites. The current trends in V-MXene and their composites for energy storage and conversion applications have been thoroughly summarized. Overall, this review offers valuable insights, identifies potential opportunities, and provides key suggestions for future advancements in the MXenes and energy storage/conversion applications.

3.
Adv Colloid Interface Sci ; 324: 103077, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219341

RESUMO

Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.

4.
Chemosphere ; 322: 138149, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804630

RESUMO

Sustainable fabrication of flexible hybrid supercapacitor electrodes is extensively investigated during the current era to solve global energy problems. Herein, we used a cost-effective and efficient electrophoretic deposition (EPD) approach to fabricate a hybrid supercapacitor electrode. ZnO/CuO and ZnO/CuO/rGO heterostructure were prepared by sol-gel synthesis route and were electrophoretically deposited on indium tin oxide (ITO) substrate as a thin uniform layer using 1 V for 20 min at 50 mV/s. ZnO/CuO and ZnO/CuO/rGO heterostructure coated ITOs were then employed as the working electrode in a three-electrode setup for supercapacitor measurements. The fabricated electrodes have been investigated by Galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) to study their charge storage properties. ZnO/CuO revealed a specific capacitance of 1945 F g-1 at 2 mV/s and 999 F g-1 at 5 A g-1. However, an increased specific capacitance of 2305 F g-1 was measured for ZnO/CuO/rGO heterostructure at 2 mV/s and 1235 F g-1 at 5 A g-1. The lower internal resistance was observed for ZnO/CuO/rGO heterostructure, indicating good conductivity of the electrode material. Thus, the overall results of the current study suggest that EPD-assisted ZnO/CuO/rGO heterostructure hybrid electrode possess a substantial potential for energy storage as a supercapacitor.


Assuntos
Óxido de Zinco , Cobre , Eletrodos
5.
Chemosphere ; 314: 137660, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581122

RESUMO

Researchers have been enthusiastic about developing high-performance electrode materials based on metal chalcogenides for energy storage applications. Herein, we developed cupric ion-containing zinc sulfide (ZnS:Cu) nanoplates by using a solvothermal approach. The as-synthesized ZnS:Cu nanoplates electrode was characterized and analyzed by using XRD, SEM, TEM, EDS, and XPS. The binder-free flexible ZnS:Cu nanoplates exhibited excellent specific capacitance of 545 F g-1 at a current density of 1 A g-1. The CV and GCD measurements revealed that the specific capacitance was mainly attributed to the Faradaic redox mechanism. Further, the binder-free flexible ZnS:Cu nanoplates electrode retained 87.4% along with excellent Coulombic efficiency (99%) after 5000 cycles. The binder-free flexible ZnS:Cu nanoplates exhibited excellent conductivity, specific capacitance, and stability which are beneficial in energy storage systems. These findings will also open new horizons amongst material scientists toward the new direction of electrode development.

6.
RSC Adv ; 12(54): 35409-35417, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540222

RESUMO

Sustainable and effective electrochemical materials for supercapacitors are greatly needed for solving the global problems of energy storage. In this regard, a facile nanocomposite of Pd/NiOPdO was synthesized using foliar phyto eco-friendly agents and examined as an electrochemical electrode active material for supercapacitor application. The nanocomposite showed a mixed phase of a ternary nano metal oxide phase of rhombohedral NiO and tetragonal PdO confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and XPS (X-rays photoelectron spectroscopy). The optical (direct) energy value of the synthesized nanocomposite was 3.14 eV. The phyto-functionalized nanocomposite was studied for electrochemical supercapacitor properties and revealed a specific capacitance of 88 F g-1 and low internal resistance of 0.8 Ω. The nanoscale and phyto organic species functionalized nanocomposite exhibited enhanced electrochemical properties for supercapacitor application.

7.
Environ Technol ; 43(4): 605-616, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32762618

RESUMO

The phytosynthesis of metal oxides nanoparticles (NPs) has been extensively reported; yet mechanism involved and incorporated bioactive compounds in the synthesized NPs are still need to be investigated. In this regard, here an efficient sustainable co-precipitation synthesis of zinc oxide nanoparticles (ZnO NPs) has been developed, employing hydrothermal reactions, using organic compounds of Nasturtium officinale leaves. Pure hexagonal wurtzite ZnO was identified by X-ray diffraction and NPs in the size range of 50-60 nm were observed by field emission scanning electron microscopy. X-ray photoelectron spectroscopy revealed surface modification of ZnO by functional groups associated with the incorporated bio active compounds of Nasturtium officinale. The phyto-functionalized ZnO NPs having anoptical direct band gap of 3.29 eV and optical band gap energy of 2.85 eV were evaluated by cyclic voltammetry at various scan rates, galvanostatic charge-discharge at a range of current densities and electrochemical impedance spectroscopy (Z' vs. Z″ and Z vs. frequency) in aqueous electrolyte. The fabricated ZnO-based electrode revealed a specific capacitance of 86.5 F/g at 2 mV/s with 97% coulombic efficiency for 2000 cycles. The good electrochemical conductivity was demonstrated by lower internal resistance of 1.04 Ω. Therefore, the present study suggested the significant potential of organic compounds incorporated ZnO NPs towards supercapacitor.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Eletrodos , Folhas de Planta , Difração de Raios X
8.
RSC Adv ; 11(38): 23374-23384, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479794

RESUMO

In recent times, tremendous efforts have been devoted to the efficient and cost-effective advancements of electrochemically active metal oxide nanomaterials. Here, we have synthesized a facile nanomaterial of ZnO@PdO/Pd by employing extracted fuel from E. cognata leaves following a hydrothermal route. The phyto-fueled ZnO@PdO/Pd nanomaterial was fabricated into a supercapacitor electrode and was scrutinized by galvanostatic charge-discharge, electrochemical impedance spectroscopy and cyclic voltammetry to evaluate its energy storage potential, and transport of electrons and conductivity. Substantial specific capacitance i.e., 178 F g-1 was obtained in the current study in aKOH electrolyte solution. A specific energy density of 3.7 W h Kg-1 was measured using the charge-discharge data. A high power density of 3718 W Kg-1 was observed for the ZnO@PdO/Pd electrode. Furthermore, the observed low internal resistance of 0.4 Ω suggested effective electron- and ion diffusion. Thus, the superb electrochemical behavior of the ZnO@PdO/Pd nanocomposite was exposed, as verified by the significant redox behavior shown by cyclic voltammetry and galvanostatic charge-discharge.

9.
Int J Nanomedicine ; 15: 5591-5602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848389

RESUMO

INTRODUCTION: The catalytic behavior of metal oxide nanomaterials for removal of organic pollutants under dark ambient conditions, without any additional stimulant, is of great interest among the scientific community. METHODS: In this account, a nanomaterial of ternary metal oxides (MoO3-NiO-PdO-Pd) was synthesized via greener approach and was explored for degradation of methyl orange in water environment in dark ambient conditions in comparison with light conditions. The biochemical species of Abies pindrow were treated with aqueous solution of precursor's salt following sol gel synthesis strategy. We further attuned morphology and chemistry of MoO3-NiO-PdO-Pd by incorporating bioactive compounds of A. pindrow. RESULT AND DISCUSSION: The bio-fabricated MoO3-NiO-PdO-Pd revealed outstanding catalytic behavior with 92% degradation of methyl orange within 15 min in the dark at ambient temperature and pressure. Whereas, in the presence of visible light irritation, the catalyst degraded 97% of methyl orange in 15 min. According to the reaction kinetics of degradation, the catalysts illustrated good stability in light (R2=0.93) as well as in dark conditions (R2=0.98). Furthermore, the outstanding reusability and recyclability of the synthesized nanomaterial was observed for four runs of the experiment under dark and light conditions. CONCLUSION: Therefore, A. pindrow-synthesized MoO3-NiO-PdO-Pd nanocatalyst demonstrated significant potential for detoxification of organic pollutants for water remediation.


Assuntos
Nanoestruturas/química , Poluentes Químicos da Água/química , Abies/química , Compostos Azo/química , Catálise , Luz , Molibdênio/química , Níquel/química , Óxidos/química , Paládio/química , Pressão , Temperatura
10.
RSC Adv ; 10(14): 8115-8129, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497827

RESUMO

Transitional metal oxide nanomaterials are considered to be potential electrode materials for supercapacitors. Therefore, in the past few decades, huge efforts have been devoted towards the sustainable synthesis of metal oxide nanomaterials. Herein, we report a synergistic approach to synthesize spherical-shaped CoMoO4 electrode materials using an inorganic-organic template via the hydrothermal route. As per the synthesis strategy, the precursor solution was reacted with the organic compounds of E. cognata to tailor the surface chemistry and morphology of CoMoO4 by organic species. The modified CoMoO4 nanomaterials revealed a particle size of 23 nm by X-ray diffraction. Furthermore, the synthesized material was scrutinized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy and energy dispersive spectroscopy. The optical band gap energy of 3.6 eV was calculated by a Tauc plot. Gas chromatography-mass spectrometry identified cyclobutanol (C4H8O) and octodrine (C8H19N) as the major stabilizing agents of the CoMoO4 nanomaterial. Finally, it was revealed that the bioorganic framework-derived CoMoO4 electrode exhibited a capacitance of 294 F g-1 by cyclic voltammetry with a maximum energy density of 7.3 W h kg-1 and power density of 7227.525 W kg-1. Consequently, the nanofeatures and organic compounds of E. cognata were found to enhance the electrochemical behaviour of the CoMoO4-fabricated electrode towards supercapacitor applications.

11.
J Sep Sci ; 43(3): 598-605, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31670898

RESUMO

A low-temperature, efficient and effective method was investigated for phytochemical hydroethanolic extraction of Nasturtium officinale (Brassicaceae). The phytocompounds of the selected plant leaves were identified by high-performance liquid chromatography, gas chromatography with mass spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy. Acetic acid, d-alanine, octodrine, decanoic acid, and cyclohexylethylamine were the major phytocompounds identified in N. officinale leaves with high similarity match and spectral purity. The reducing and stabilizing potential of the extracted phytochemicals was demonstrated by synthesizing the metal oxide nanoparticles (MoO3 ) by treating ammonium heptamolybdate tetrahydrate (H4 MO7 N6 O24 .4H2 O) aqueous complex with bioactive compounds of the leaves. The bio-synthesized MoO3 nanoparticles were characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, field emission-scanning electron microscopy, and gas chromatography with mass spectroscopy. Gas chromatography-mass spectroscopy identified acetic acid, d-alanine, and octodrine as stabilizing agents in the synthesis of MoO3 nanoparticles.


Assuntos
Brassicaceae/química , Química Verde , Molibdênio/química , Nanopartículas/química , Óxidos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Compostos Fitoquímicos/química , Extratos Vegetais/química , Folhas de Planta/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA