Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2499, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291095

RESUMO

Diabetes is a serious health issue that can be a great risk factor related to numerous physical problems. A class of drugs "Gliflozin" especially Sodium Glucose Co. Transporter 2 was inhibited by a novel drug, which is known as "empagliflozin". While ZnO nanoparticles (NPs) had considerable promise for combating diabetes, it was employed in the treatment and management of type-2 diabetes mellitus. The new drug empagliflozin was initially incorporated into Zinc Oxide NPs in this study using the surface physio-sorption technique, and the degree of drug adsorption was assessed using the HPLC method. The tailored product was characterized by using the FTIR, EDX, Ultraviolet-Visible, XRD and SEM techniques. With an average particle size of 17 nm, SEM revealed mono-dispersion of NPs and sphere-like form. The Freundlich isotherm model best fits and explains the data for the physio-sorption investigation, which examined adsorption capabilities using adsorption isotherms. The enzymes α-amylase and α-glucosidase, which are involved in the human metabolism of carbohydrates, were used in the in-vitro anti-diabetic assays. It was discovered that the composite showed the highest levels of 81.72 and 92.77% inhibition of -α-amylase and -glucosidase at an absolute concentration of 1000 µg per ml with IC50 values of 30.6 µg per ml and 72 µg per ml.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , alfa-Amilases , Antibacterianos/farmacologia , Extratos Vegetais
2.
RSC Adv ; 13(20): 13443-13455, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37152558

RESUMO

Catechol is a pollutant that can lead to serious health issues. Identification in aquatic environments is difficult. A highly specific, selective, and sensitive electrochemical biosensor based on a copper-polypyrrole composite and a glassy carbon electrode has been created for catechol detection. The novelty of this newly developed biosensor was tested using electrochemical techniques. The charge and mass transfer functions and partially reversible oxidation kinetics of catechol on the redesigned electrode surface were examined using electrochemical impedance spectroscopy and cyclic voltammetry scan rates. Using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry, the characteristics of sensitivity (8.5699 µA cm-2), LOD (1.52 × 10-7 µM), LOQ (3.52 × 10-5 µM), linear range (0.02-2500 µM), specificity, interference, and real sample detection were investigated. The morphological, structural, and bonding characteristics were investigated using XRD, Raman, FTIR, and SEM. Using an oxidation-reduction technique, a suitable biosensor material was produced. In the presence of interfering compounds, it was shown that it was selective for catechol, like an enzyme.

3.
RSC Adv ; 13(15): 10017-10028, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006370

RESUMO

The conductive composite Co@SnO2-PANI was successfully synthesized using hydrothermal/oxidative synthesis. Using differential pulse voltammetry, a glassy carbon electrode modified with a CoSnO2-PANI (polyaniline)-based electrochemical biosensor has been created for the quick detection of two phenolics, hydroquinone (Hq) and catechol (Cat). Differential pulse voltammetry (DPV) measurements revealed two well-resolved, strong peaks for GCE@Co-SnO2-PANI, which corresponded to the oxidation of Hq and Cat at 275.87 mV and +373.76 mV, respectively. The oxidation peaks of Hq and Cat mixtures were defined and separated at a pH of 8.5. High conductivity and remarkable selectivity reproducibility was tested by electrochemical impedance spectroscopy, chronoamperometry, and cyclic voltammetry techniques in standard solution and real water samples. The proposed biosensor displayed a low detection limit of 4.94 nM (Hq) and 1.5786 nM (Cat), as well as a large linear range stretching from 2 × 10-2 M to 2 × 10-1 M. The real-sample testing showed a good recovery for the immediate detection of Hq (96.4% recovery) and Cat (98.8% recovery) using the investigated sensing apparatus. The synthesized biosensor was characterized by XRD, FTIR, energy dispersive spectroscopy and scanning electron microscopy.

4.
Heliyon ; 9(1): e12685, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660457

RESUMO

Semiconducting membrane combined with nanomaterials is an auspicious combination that may successfully eliminate diverse waste products from water while consuming little energy and reducing pollution. Creating an inexpensive, steady, flexible, and diversified business material for membrane production is a critical challenge in membrane technology development. Because of its unusual structure and high catalytic activity, graphitic carbon nitride (g-C3N4) has come out as a viable material for membranes. Furthermore, their great durability, high permanency under challenging environments, and long-term use without decrease in flux are significant advantages. The advanced material techniques used to manage the molecular assembly of g-C3N4 for separation membrane were detailed in this review work. The progress in using g-C3N4-based membranes for water treatment has been detailed in this presentation. The review delivers an updated description of g-C3N4 based membranes and their separation functions and new ideas for future enhancements/adjustments to address their weaknesses in real-world situations. Finally, the ongoing problems and promising future research directions for g-C3N4-based membranes are discussed.

5.
Toxics ; 10(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36355948

RESUMO

The synthesis of a photo-catalyst with a narrow bandgap and efficient capability to degrade contaminants in the presence of sunlight is currently challenging but exciting. In this work, an efficient photocatalytic ternary nanocomposite g-C3N4/Cu@CdS has been synthesized successfully by using the co-precipitation method. The synthesized composite was then characterized by SEM, XRD studies, EDX analysis, and ultra-violet-visible (UV-VIS) spectroscopy. The catalytic efficiency for the methylene blue (MB) dye and drug degradation (ciprofloxacin) was assessed by UV-visible absorption spectra. Gram-positive and Gram-negative bacteria were used to test the fabrication composite's antibacterial properties. Various compositions (1%, 3%, 5%, 7%, and 9%) of/Cu@CdS nanocomposite (NCs) and 20%, 30%, 40%, 50%, and 60% of g-C3N4 NCs were prepared. Results reveal that 5%Cu@CdS and 40%g-C3N45%Cu@CdS showed maximum antibacterial activity and photocatalytic degradation of dye and drug. The X-ray pattern showed no remarkable change in doped and pristine CdS nanoparticles (NPs). The efficient photocatalytic degradation activity of the fabricated ternary nanocomposite against MB dye and ciprofloxacin an antibiotic drug makes it a viable contender for solving environmental problems.

6.
Biomed Res Int ; 2022: 4910777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147638

RESUMO

Many synthetic routes manufacture zirconium nanoparticles in metal oxide, nitride, and other combination forms. Coupled with other variables such as concentration, pH, and form of precursor used, the various synthetic methods support synthesizing the zirconium metal oxide nanoparticles with changed features. Various synthetic methods were studied, such as sol-gel, hydrothermal, laser ablation, and precipitation. All have different synthetic routes, different precursors and solvents were sued, and the product was characterized by SEM, TEM, photo luminance spectroscopy, UV-absorption spectroscopy, and powder X-ray diffraction. X-ray diffraction determined the crystal structure by identifying the crystal shape, arrangement of atoms, and spacing between them. SEM and TEM studied the particle size and morphology of nanoparticles. UV-visible absorption spectroscopy and PL spectroscopy were used for the determination of optical properties of nanoparticles. Zirconium oxide nanoparticles have many applications in the medical field. The review study primarily focuses on the efficient combination of zirconium dioxide with other additive materials and functionalization techniques used to improve the material's properties, assisting the use of the material in hip arthroplasty and bone tissue applications. The development of sophisticated near-infrared (NIR) absorbing small molecules for useful phototheranostic applications was discussed in this paper.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanopartículas Metálicas/química , Nanopartículas/uso terapêutico , Óxidos , Pós , Solventes , Difração de Raios X , Zircônio/química , Zircônio/uso terapêutico
7.
J Photochem Photobiol B ; 219: 112202, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33946027

RESUMO

This article reports the synthesis of a novel ternary Visible-Light-Driven (VLD) photocatalyst and antibacterial agent. The two-dimensional graphitic carbon nitride nanosheets (g-C3N4 NSs) and 7% molybdenum doped zinc oxide nanoparticles (Mo doped ZnO NPs) were used for the synthesis of the 65% g-C3N4 hybridized with 7% Mo doped ZnO novel ternary nanocomposite (Mo doped ZnO/g-C3N4 ternary NC). The synthesis process, as well as the structures, morphologies, photocatalytic and antibacterial properties of the synthesized ternary NC and constituents, were investigated by using several spectroscopic and microscopic techniques. It was revealed through the Transmission Electron Microscopy (TEM) characterization of the synthesized NC that the Mo doped ZnO NPs were found uniformly embedded upon the well-stacked g-C3N4NSs. It was further discovered by the bandgap analysis that the light absorbance ability of the ternary NC exists in the visible region of the light spectrum. The photocatalytic degradation of the methylene blue (MB) by the use of novel ternary NC in an aqueous medium was analyzed while using Ultra Violet-Visible (UV-Visible) spectroscopy. Trapping experiments of active species during the photodegradation and Electron Spin Resonance (ESR) experiment revealed that the superoxide and hydroxyl radicals were the leading species liable for MB deterioration. The ternary NC exhibited superior photocatalytic performance as compared with binary doped or hybridized nanomaterials (NMs) and mono photocatalysts due to the facility of effective migration and separation of the charge carriers across the (Mo doped ZnO NPs)/g-C3N4 NSs interface of the heterojunction. The increased generation of the reactive oxygen species (ROS), O2-, and •OH radicals the photogenerated charge carriers within the Mo doped ZnO/g-C3N4 NC were found responsible for its enhanced antibacterial performance.


Assuntos
Antibacterianos/síntese química , Grafite/química , Luz , Nanocompostos/química , Compostos de Nitrogênio/química , Fotólise/efeitos da radiação , Óxido de Zinco/química , Antibacterianos/farmacologia , Catálise , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Radical Hidroxila/química , Nanopartículas Metálicas/química , Azul de Metileno/química , Molibdênio/química , Nanocompostos/toxicidade
8.
Acta Biomater ; 128: 262-276, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33866034

RESUMO

Contact lenses are widely used for visual corrections. However, while wearing contact lenses, eyes typically face discomforts (itching, irritation, burning, etc.) due to foreign object sensation, lack of oxygen permeability, and tear film disruption as opposed to a lack of wetting agents. Eyes are also prone to ocular infections such as bacterial keratitis (BK) and fungal keratitis (FK) and inflammatory events such as contact lens-related acute red eye (CLARE), contact lens peripheral ulcer (CLPU), and infiltrative keratitis (IK) caused by pathogenic bacterial and fungal strains that contaminate contact lenses. Therefore, a good design of contact lenses should adequately address the need for wetting, the supply of antioxidants, and antifouling and antimicrobial efficacy. Here, we developed multifunctional gallic acid (GA), phytomolecules-coated zinc oxide nanoparticles (ZN), and phytomolecules-coated zinc oxide nanoparticles + gallic acid + tobramycin (ZGT)-coated contact lenses using a sonochemical technique. The coated contact lenses exhibited significant antibacterial (>log10 5.60), antifungal, and antibiofilm performance against BK-causing multidrug resistant bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia. coli) and FK-related pathogenic fungal strains (Candida albicans, Aspergillus fumigatus, and Fusarium solani). The gallic acid, tobramycin, and phytomolecules-coated zinc oxide nanoparticles have different functionalities (-OH, -NH2, -COOH, -COH, etc.) that enhanced wettability of the coated contact lenses as compared to that of uncoated ones and further enabled them to exhibit remarkable antifouling property by prohibiting adhesion of platelets and proteins. The coated contact lenses also showed significant antioxidant activity by scavenging DPPH and good cytocompatibility to human corneal epithelial cells and keratinocytes cell lines. STATEMENT OF SIGNIFICANCE: • Multifunctional coated lenses were developed with an efficient sonochemical approach. • Lens surface was modified with nanocoatings of ZnO nanoparticles, gallic acid, and tobramycin. • This synergistic combination endowed the lenses with remarkable antimicrobial activity. • Coated lenses also showed noteworthy antifouling and biofilm inhibition activities. • Coated lenses showed good antioxidant, biocompatibility, and wettability characteristics.


Assuntos
Lentes de Contato , Ceratite , Nanopartículas , Óxido de Zinco , Fusarium , Ácido Gálico , Humanos , Ceratite/tratamento farmacológico , Pseudomonas aeruginosa , Tobramicina/farmacologia , Óxido de Zinco/farmacologia
9.
Int J Nanomedicine ; 16: 1757-1773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688190

RESUMO

BACKGROUND: NiO nanoparticles have attracted much attention due to their unique properties. They have been synthesized using chemical and physical techniques that often need toxic chemicals. These toxic chemicals cannot easily be removed from the nanoparticle's surface, make them less biocompatible, and limit their biological applications. Instead, plants based green synthesis of nanoparticles uses phytomolecules as reducing and capping agents. These phytomolecules are biologically active with no or less toxic effects. MATERIALS AND METHODS: Phytomolecules-coated NiO nanoparticles were synthesized employing a green route using Abutilon indicum leaf extract. For comparative study, we also have synthesized NiO nanoparticles using the co-precipitation method. Synthesized nanoparticles were successfully characterized using different spectroscopic techniques. The synthesized nanoparticles were evaluated for antibacterial activity with agar well diffusion assay against different bacteria compared to standard drug and plant extract. They are also examined for anticancer potential using MTT assay against HeLa cancer cells, and further, their antioxidant potential was determined using DPPH assay. Biocompatibility of the synthesized nanoparticles was assessed against fibroblast cells. RESULTS: Phytomolecules-coated NiO nanoparticles were demonstrated superior antibacterial and anticancer performance against bacteria (E. coli, B. bronchiseptica, B. subtilis, and S. aureus) by presenting highest zone of inhibitions (18 ± 0.58 mm, 21 ± 0.45 mm, 22 ± 0.32 mm, and 23 ± 0.77 mm) and HeLa cancer cells by exhibiting the least cell viability percentage (51.74 ± 0.35%) compared to plant extract and chemically synthesized NiO nanoparticles but were comparable to standard antibiotic and anticancer drugs, respectively. Phytomolecules-coated NiO nanoparticles were also demonstrated excellent antioxidant activity (79.87 ± 0.43% DPPH inhibition) and biocompatibility (> 90% cell viability) with fibroblast cells. CONCLUSION: Nanoparticle synthesis using the Abutilon indicum leaf extract is an efficient and economical method, produces biocompatible and more biologically active nanoparticles, which can be an excellent candidate for therapeutic applications.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Malvaceae/química , Nanopartículas Metálicas/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Folhas de Planta/química , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/química , Fibroblastos/efeitos dos fármacos , Química Verde , Células HeLa , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Picratos/química , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Difração de Raios X
10.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419098

RESUMO

This study deals with the green synthesis of chromium oxide (Cr2O3) nanoparticles using a leaf extract of Abutilon indicum (L.) Sweet as a reducing and capping agent. Different characterization techniques were used to characterize the synthesized nanoparticles such as X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM), Energy-dispersive X-ray (EDX), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-VIS) spectroscopy. The X-ray diffraction technique confirmed the purity and crystallinity of the Cr2O3 nanoparticles. The average size of the nanoparticles ranged from 17 to 42 nm. The antibacterial activity of the green synthesized nanoparticles was evaluated against four different bacterial strains, E. coli, S. aureus, B. bronchiseptica, and B. subtilis using agar well diffusion and a live/dead staining assay. The anticancer activities were determined against Michigan Cancer Foundation-7 (MCF-7) cancer cells using MTT and a live/dead staining assay. Antioxidant activity was investigated in the linoleic acid system. Moreover, the cytobiocompatibility was analyzed against the Vero cell lines using MTT and a live/dead staining assay. The results demonstrated that the green synthesized Cr2O3 nanoparticles exhibited superior antibacterial activity in terms of zones of inhibition (ZOIs) against Gram-positive and Gram-negative bacteria compared to plant extracts and chemically synthesized Cr2O3 nanoparticles (commercial), but comparable to the standard drug (Leflox). The green synthesized Cr2O3 nanoparticles exhibited significant anticancer and antioxidant activities against MCF-7 cancerous cells and the linoleic acid system, respectively, compared to chemically synthesized Cr2O3 nanoparticles. Moreover, cytobiocompatibility analysis displayed that they presented excellent biocompatibility with Vero cell lines than that of chemically synthesized Cr2O3 nanoparticles. These results suggest that the green synthesized Cr2O3 nanoparticles' enhanced biological activities might be attributed to a synergetic effect. Hence, green synthesized Cr2O3 nanoparticles could prove to be promising candidates for future biomedical applications.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Antioxidantes/química , Materiais Biocompatíveis/química , Compostos de Cromo/química , Nanopartículas Metálicas/química , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Química Verde/métodos , Humanos , Células MCF-7 , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica , Oxirredução/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Células Vero , Difração de Raios X
11.
RSC Adv ; 11(59): 37254-37267, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496420

RESUMO

The photocatalytic activity of photocatalysts is severely hampered by limited visible light harvesting and unwanted fast recombination of photogenerated e- and h+. In the current study, the photocatalytic efficiency of Cu-ZnO/S-g-C3N4 (CZS) nanocomposites was investigated against MB dye. The composite materials were designed via chemical co-precipitation method and characterised by important analytical techniques. Distinctive heterojunctions developed between S-g-C3N4 and Cu-ZnO in the CZS composite were revealed by TEM. The synthesized composites exhibit a huge number of active sites, a large surface area, a smaller size and better visible light absorption. The considerable enhancement in the photocatalytic activity of CZS nanocomposites might be accredited to the decay in the e-h pair recombination rate and a red shift in the visible region, as observed by PL and optical analysis, respectively. Furthermore, the metal (Cu) doping into the S-g-C3N4/ZnO matrix created exemplary interfaces between ZnO and S-g-C3N4, and maximized the photocatalytic activity of CZS nanocomposites. In particular, CZS nanocomposites synthesized by integrating 25% S-g-C3N4 with 4% Cu-ZnO (CZS-25 NCs) exhibited the 100% photocatalytic degradation of MB in 60 minutes under sunlight irradiation. After six cycles, the photocatalytic stability of CZS-25 NCs was excellent. Likewise, a plausible MB degradation mechanism is proposed over CZS-25 NCs based on photoluminescence and reactive species scavenger test observation. The current research supports the design of novel composites for the photocatalytic disintegration of organic contaminants.

12.
RSC Adv ; 11(4): 2025-2039, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35424172

RESUMO

The in situ growth of well-dispersed Cd-doped ZnO nanoparticles (Cd-ZnO NPs) on graphitic carbon nitride (g-C3N4) nanosheets was successfully achieved through the co-precipitation method for the formation of Cd-doped ZnO nanocomposites with g-C3N4 (Cd-ZnO/g-C3N4 NCs). The effect of different compositions of ternary nanocomposites (Cd-ZnO/g-C3N4 NCs) on photocatalytic properties was investigated. Ternary NCs, in which 60% g-C3N4 hybridized with 7% Cd-doped ZnO (g-C3N4/Cd-ZnO) NCs were proven to be optimum visible-light-driven (VLD) photocatalysts for the degradation of methylene blue (MB) dye. The enhanced photodegradation of MB is mainly due to the increase in the generation of photogenerated charge carriers (reactive oxygen species (ROS), O2-, and ˙OH radicals). The electron spin resonance (ESR) experiment revealed that the superoxide and hydroxyl radicals were the leading species responsible for the degradation of MB. Moreover, the NC exhibited tremendous stability with a consistently high MB degradation rate for 10 successive catalytic cycles. The structural and optical properties of CdO, ZnO NPs, Cd-ZnO NPs, g-C3N4 NSs, and g-C3N4/Cd-ZnO NCs were investigated via XRD, SEM, EDX, TEM, FTIR spectroscopy, UV-Vis spectroscopy, ESR spectroscopy, and PL spectroscopy techniques. The synthesized photocatalysts were also applied against Gram-positive and Gram-negative bacterial strains to evaluate their antibacterial activities.

13.
Biosci Biotechnol Biochem ; 84(10): 1967-1974, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32619142

RESUMO

This work presents the development and validation of a simple, rapid, and cost-effective spectrophotometric method for quantitative analysis of uric acid in biological samples. The method relies upon uric acid-led reduction of Fe(III) to Fe(II) of sample/standard solutions which stoichiometrically engages ferrozine to form a magenta-colored complex. Different parameters including pH, metal and chelator concentrations, temperature, etc., were optimized for the maximum intensity and stability of the complex. The uric acid concentrations of synthetic/plasma solutions were determined by comparing the color intensity of Fe(ferrozine)3 2+ complex produced by test solution with the standard curve formed by known uric acid concentrations. The method was validated in accordance with ICH guidelines and subjected to human plasma analysis. The results obtained were compared with a reference (enzymatic) method which revealed that there was no significant difference between the two methods at 95% confidence level. The method is highly specific, precise, linear, accurate, and robust.


Assuntos
Análise Química do Sangue/métodos , Colorimetria/métodos , Ferrozina/química , Ferro/química , Ácido Úrico/sangue , Análise Química do Sangue/economia , Análise Química do Sangue/normas , Cor , Colorimetria/economia , Colorimetria/normas , Análise Custo-Benefício , Humanos , Concentração de Íons de Hidrogênio , Padrões de Referência , Temperatura , Fatores de Tempo
14.
Biomolecules ; 10(6)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486004

RESUMO

Due to their versatile applications, gold (Au) and silver (Ag) nanoparticles (NPs) have been synthesized by many approaches, including green processes using plant extracts for reducing metal ions. In this work, we propose to use plant extract with active biomedical components for NPs synthesis, aiming to obtain NPs inheriting the biomedical functions of the plants. By using leaves extract of Clerodendrum inerme (C. inerme) as both a reducing agent and a capping agent, we have synthesized gold (CI-Au) and silver (CI-Ag) NPs covered with biomedically active functional groups from C. inerme. The synthesized NPs were evaluated for different biological activities such as antibacterial and antimycotic against different pathogenic microbes (B. subtilis, S. aureus, Klebsiella, and E. coli) and (A. niger, T. harzianum, and A. flavus), respectively, using agar well diffusion assays. The antimicrobial propensity of NPs further assessed by reactive oxygen species (ROS) glutathione (GSH) and FTIR analysis. Biofilm inhibition activity was also carried out using colorimetric assays. The antioxidant and cytotoxic potential of CI-Au and CI-Ag NPs was determined using DPPH free radical scavenging and MTT assay, respectively. The CI-Au and CI-Ag NPs were demonstrated to have much better antioxidant in terms of %DPPH scavenging (75.85% ± 0.67% and 78.87% ± 0.19%), respectively. They exhibited excellent antibacterial, antimycotic, biofilm inhibition and cytotoxic performance against pathogenic microbes and MCF-7 cells compared to commercial Au and Ag NPs functionalized with dodecanethiol and PVP, respectively. The biocompatibility test further corroborated that CI-Ag and CI-Au NPs are more biocompatible at the concentration level of 1-50 µM. Hence, this work opens a new environmentally-friendly path for synthesizing nanomaterials inherited with enhanced and/or additional biomedical functionalities inherited from their herbal sources.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Clerodendrum/química , Extratos Vegetais/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/síntese química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Fungos/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Picratos/antagonistas & inibidores , Extratos Vegetais/síntese química , Extratos Vegetais/química , Prata/química , Prata/farmacologia
15.
Biomolecules ; 10(5)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438654

RESUMO

We report the synthesis of MnO nanoparticles (AI-MnO NAPs) using biological molecules of Abutilon indicum leaf extract. Further, they were evaluated for antibacterial and cytotoxicity activity against different pathogenic microbes (Escherichia coli, Bordetella bronchiseptica, Staphylococcus aureus, and Bacillus subtilis) and HeLa cancerous cells. Synthesized NAPs were also investigated for photocatalytic dye degradation potential against methylene blue (MB), and adsorption activity against Cr(VI) was also determined. Results from Scanning electron microscope (SEM), X-ray powder diffraction (XRD), Energy-dispersive X-ray (EDX), and Fourier-transform infrared spectroscopy (FTIR) confirmed the successful synthesis of NAPs with spherical morphology and crystalline nature. Biological activity results demonstrated that synthesized AI-MnO NAPs exhibited significant antibacterial and cytotoxicity propensities against pathogenic microbes and cancerous cells, respectively, compared with plant extract. Moreover, synthesized AI-MnO NAPs demonstrated the comparable biological activities results to standard drugs. These excellent biological activities results are attributed to the existence of the plant's biological molecules on their surfaces and small particle size (synergetic effect). Synthesized NAPs displayed better MB-photocatalyzing properties under sunlight than an ultraviolet lamp. The Cr(VI) adsorption result showed that synthesized NAPs efficiently adsorbed more Cr(VI) at higher acidic pH than at basic pH. Hence, the current findings suggest that Abutilon indicum is a valuable source for tailoring the potential of NAPs toward various enhanced biological, photocatalytic, and adsorption activities. Consequently, the plant's biological molecule-mediated synthesized AI-MnO NAPs could be excellent contenders for future therapeutic applications.


Assuntos
Antibacterianos/síntese química , Citostáticos/síntese química , Malvaceae/química , Compostos de Manganês/química , Nanopartículas/química , Óxidos/química , Extratos Vegetais/química , Adsorção , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bordetella bronchiseptica/efeitos dos fármacos , Citostáticos/farmacologia , Química Verde , Células HeLa , Humanos , Staphylococcus aureus/efeitos dos fármacos
16.
Microb Pathog ; 125: 366-384, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30287189

RESUMO

A novel approach was employed for the synthesis of un-doped tinoxide and Cobalt-doped tinoxide (Co-doped SnO2) nanoparticles (NAPs) by using aqueous extract of Clerodendrum inerme with the help of eco-friendly superficial solution combustion method. Synthesized NAPs were characterized by different spectroscopic techniques and results from XRD, TEM, SEM, EDX and UV-Vis examines confirmed the successful synthesis, crystalline nature and spherical structure of un-doped SnO2 and Co-doped SnO2 NAPs with the average grain size of 30 and 40 nm; and band gap energy of 3.68 and 2.76 eV respectively. Antimicrobial propensity of the synthesized NAPs was determined by agar well assay, SEM, TEM and confocal laser scanning microscopic analysis against various bacterial and fungal strains. Synthesized Co-doped SnO2 NAPs were unveiled the extraordinary antibacterial and antifungal activities against E. coli, B. subtilis, A. niger, A. flavus, and C. albicans with the zone of inhibitions of 30 ±â€¯0.08 mm and 26 ±â€¯0.06 mm, 17 ±â€¯0.04 mm, 23 ±â€¯0.08 mm and 26 ±â€¯0.06 respectively which were also evidenced from SEM, TEM and confocal laser scanning microscopy. In addition, green synthesized Co-doped SnO2 NAPs were demonstrated the substantial antioxidant activity by scavenging DPPH, significant in vitro anticancer and in vivo antitumor activity on breast carcinoma cells (MCF-7) and Ehrlich ascites tumor cell lines respectively than standard. The hemolytic activity disclosed low cytotoxicity of fabricated NAPs (0.89 ±â€¯0.05%) at 5 mg/mL, which was indicated their biocompatibility potential. Hence, the multi-purpose properties of synthesized NAPs presented in the current study can be further deliberated for pharmaceutical and nanomedicine applications.


Assuntos
Anti-Infecciosos/metabolismo , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Clerodendrum/metabolismo , Nanopartículas/metabolismo , Compostos de Estanho/metabolismo , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/metabolismo , Neoplasias da Mama/tratamento farmacológico , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Picratos/metabolismo , Análise Espectral , Compostos de Estanho/isolamento & purificação , Compostos de Estanho/farmacologia , Células Tumorais Cultivadas
17.
Acta Chim Slov ; 60(3): 660-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24169721

RESUMO

Nano particles have received increased attention regarding their potential utility in biomedicine. In this study, we have investigated the antibacterial activity of ZnO nano particles with various particle sizes. ZnO nano particles were synthesized by conventional precipitation method using zinc sulphate and sodium hydroxide as precursors followed by the calcinations of precipitates at 350 °C for 6 h (sample A) and 550 °C for 2 h (sample B). The products were characterized by X-ray diffraction (XRD) analysis and morphology of the particles was evaluated by Scanning Electron Microscopy (SEM). Antibacterial activities against four different microorganisms were evaluated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and zones of inhibitions using different concentrations of ZnO nanoparticles. The antibacterial activity was directly proportional to the concentration and inversely proportional to the particle size in all the microorganisms; moreover Gram positive bacteria were generally more affected than Gram negative bacteria. The stability of ZnO nanoparticles combined with potent antibacterial properties favours their application as antibacterials against broad spectrum of microorganisms.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas/química , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA