Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961206

RESUMO

Hidradenitis suppurativa (HS) is a chronic debilitating inflammatory skin disease with poorly understood pathogenesis. Single-cell RNAseq analysis of HS lesional and healthy individual skins revealed that NKT and NK cell populations were greatly expanded in HS, and they expressed elevated CD2, an activation receptor. Immunohistochemistry analyses confirmed significantly expanded numbers of CD2+ cells distributed throughout HS lesional tissue, and many co-expressed the NK marker, CD56. While CD4+ T cells were expanded in HS, CD8 T cells were rare. CD20+ B cells in HS were localized within tertiary follicle like structures. Immunofluorescence microscopy showed that NK cells (CD2 + CD56 dim ) expressing perforin, granzymes A and B were enriched within the hyperplastic follicular epidermis and tunnels of HS and juxtaposed with apoptotic cells. In contrast, NKT cells (CD2 + CD3 + CD56 bright ) primarily expressed granzyme A and were associated with α-SMA expressing fibroblasts within the fibrotic regions of the hypodermis. Keratinocytes and fibroblasts expressed high levels of CD58 (CD2 ligand) and they interacted with CD2 expressing NKT and NK cells. The NKT/NK maturation and activating cytokines, IL-12, IL-15 and IL-18, were significantly elevated in HS. Inhibition of cognate CD2-CD58 interaction with blocking anti-CD2 mAb in HS skin organotypic cultures resulted in a profound reduction of the inflammatory gene signature and secretion of inflammatory cytokines and chemokines in the culture supernate. In summary, we show that a cellular network of heterogenous NKT and NK cell populations drives inflammation, tunnel formation and fibrosis in the pathogenesis of HS. Furthermore, CD2 blockade is a viable immunotherapeutic approach for the management of HS.

2.
Sci Rep ; 13(1): 3394, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854738

RESUMO

Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury. All of these deleterious effects can contribute to secondary brain ischemia, cellular death, and neuroinflammation that progress for weeks, months, and lifetime after injury. While the linear effects of head trauma have been extensively modeled, less is known about how rotational injuries mediate neuronal damage following injury. Here, we developed a new model of repetitive rotational head trauma in rodents and demonstrated acute and prolonged pathological, behavioral, and electrophysiological effects of rotational TBI (rTBI). We identify aberrant Cyclin-dependent kinase 5 (Cdk5) activity as a principal mediator of rTBI. We utilized Cdk5-enriched phosphoproteomics to uncover potential downstream mediators of rTBI and show pharmacological inhibition of Cdk5 reduces the cognitive and pathological consequences of injury. These studies contribute meaningfully to our understanding of the mechanisms of rTBI and how they may be effectively treated.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Craniocerebrais , Quinase 5 Dependente de Ciclina , Animais , Ratos , Encéfalo , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Traumatismos Craniocerebrais/genética , Traumatismos Craniocerebrais/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo
3.
Comput Struct Biotechnol J ; 20: 2001-2012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35521542

RESUMO

Network science identifies key players in diverse biological systems including host-pathogen interactions. We demonstrated a scale-free network property for a comprehensive rice protein-protein interactome (RicePPInets) that exhibits nodes with increased centrality indices. While weighted k-shell decomposition was shown efficacious to predict pathogen effector targets in Arabidopsis, we improved its computational code for a broader implementation on large-scale networks including RicePPInets. We determined that nodes residing within the internal layers of RicePPInets are poised to be the most influential, central, and effective information spreaders. To identify central players and modules through network topology analyses, we integrated RicePPInets and co-expression networks representing susceptible and resistant responses to strains of the bacterial pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola (Xoc) and generated a RIce-Xanthomonas INteractome (RIXIN). This revealed that previously identified candidate targets of pathogen transcription activator-like (TAL) effectors are enriched in nodes with enhanced connectivity, bottlenecks, and information spreaders that are located in the inner layers of the network, and these nodes are involved in several important biological processes. Overall, our integrative multi-omics network-based platform provides a potentially useful approach to prioritizing candidate pathogen effector targets for functional validation, suggesting that this computational framework can be broadly translatable to other complex pathosystems.

4.
Transl Psychiatry ; 11(1): 73, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483466

RESUMO

Disrupted synaptic plasticity is the hallmark of major depressive disorder (MDD), with accompanying changes at the molecular and cellular levels. Often, the maladaptive molecular changes at the synapse are the result of global transcriptional reprogramming dictated by activity-dependent synaptic modulation. Thus far, no study has directly studied the transcriptome-wide expression changes locally at the synapse in MDD brain. Here, we have examined altered synaptic transcriptomics and their functional relevance in MDD with a focus on the dorsolateral prefrontal cortex (dlPFC). RNA was isolated from total fraction and purified synaptosomes of dlPFC from well-matched 15 non-psychiatric controls and 15 MDD subjects. Transcriptomic changes in synaptic and total fractions were detected by next-generation RNA-sequencing (NGS) and analyzed independently. The ratio of synaptic/total fraction was estimated to evaluate a shift in gene expression ratio in MDD subjects. Bioinformatics and network analyses were used to determine the biological relevance of transcriptomic changes in both total and synaptic fractions based on gene-gene network, gene ontology (GO), and pathway prediction algorithms. A total of 14,005 genes were detected in total fraction. A total of 104 genes were differentially regulated (73 upregulated and 31 downregulated) in MDD group based on 1.3-fold change threshold and p < 0.05 criteria. In synaptosomes, out of 13,236 detectable genes, 234 were upregulated and 60 were downregulated (>1.3-fold, p < 0.05). Several of these altered genes were validated independently by a quantitative polymerase chain reaction (qPCR). GO revealed an association with immune system processes and cell death. Moreover, a cluster of genes belonged to the nervous system development, and psychological disorders were discovered using gene-gene network analysis. The ratio of synaptic/total fraction showed a shift in expression of 119 genes in MDD subjects, which were primarily associated with neuroinflammation, interleukin signaling, and cell death. Our results suggest not only large-scale gene expression changes in synaptosomes, but also a shift in the expression of genes from total to synaptic fractions of dlPFC of MDD subjects with their potential role in immunomodulation and cell death. Our findings provide new insights into the understanding of transcriptomic regulation at the synapse and their possible role in MDD pathogenesis.


Assuntos
Transtorno Depressivo Maior , Transcriptoma , Encéfalo , Transtorno Depressivo Maior/genética , Humanos , Patologia Molecular , Córtex Pré-Frontal
5.
Planta ; 226(1): 125-37, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17310369

RESUMO

Regulatory proteins play critical roles in controlling the kinetics of various cellular processes during the entire life span of an organism. Leaf senescence, an integral part of the plant developmental program, is fine-tuned by a complex transcriptional regulatory network ensuring a successful switch to the terminal life phase. To expand our understanding on how transcriptional control coordinates leaf senescence, we characterized AtWRKY70, a gene encoding a WRKY transcription factor that functions as a negative regulator of developmental senescence. To gain insight into the interplay of senescence and plant defense signaling pathways, we employed a collection of mutants, allowing us to specifically define the role of AtWRKY70 in the salicylic acid-mediated signaling cascades and to further dissect the cross-talk of signal transduction pathways during the onset of senescence in Arabidopsis thaliana. Our results provide strong evidence that AtWRKY70 influences plant senescence and defense signaling pathways. These studies could form the basis for further unraveling of these two complex interlinked regulatory networks.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Núcleo Celular/química , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Luz , Folhas de Planta/química , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA