Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37627398

RESUMO

Bovine herpes virus -1 (BoHV-1) infection leads to upper respiratory tract infection, conjunctivitis and genital disorders in cattle. To control BoHV-1, it is important to understand the role of viral proteins in viral infection. BoHV-1 has several gene products to help in viral replication in infected cell. One such gene is deoxyuridine triphosphate nucleotidohydrolase (dUTPase) also known as UL50. In this study, we analyzed the amino acid sequence of UL50 (dUTPase) using bioinformatics tools and found that it was highly conserved among herpesvirus family. Then, it was cloned and expressed in Escherichia coli Rosetta (DE3), induced by isopropy1-b-D-thiogalactopyranoside (IPTG) and the recombinant UL50 protein was purified to immunize rabbits for the preparation of polyclonal antiserum. The results indicated that the UL50 gene of BoHV-1 was composed of 978 nucleotides, which encoded 323 amino acids. Western blot analysis revealed that polyclonal sera against UL50 reacted with a band of 34 kDa. Furthermore, immunofluorescence assay showed that UL50 localized in the cytoplasmic area. Taken together, UL50 was successfully cloned, expressed and detected in BoHV-1-infected cells and was localized in the cytoplasm to help in the replication of BoHV-1 in infected cells.

2.
Microorganisms ; 8(3)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183205

RESUMO

Bovine herpesvirus1 (BoHV-1) is a major bovine pathogen. Despite several vaccines being available to prevent viral infection, outbreaks are frequent and cause important economic consequences worldwide. The development of new antiviral drugs is therefore highly desirable. In this context, viral genome replication represents a potential target for therapeutic intervention. BoHV-1 genome is a dsDNA molecule whose replication takes place in the nuclei of infected cells and is mediated by a viral encoded DNA polymerase holoenzyme. Here, we studied the physical interaction and subcellular localization of BoHV-1 DNA polymerase subunits in cells for the first time. By means of co-immunoprecipitation and confocal laser scanning microscopy (CLSM) experiments, we could show that the processivity factor of the DNA polymerase pUL42 is capable of being autonomously transported into the nucleus, whereas the catalytic subunit pUL30 is not. Accordingly, a putative classic NLS (cNLS) was identified on pUL42 but not on pUL30. Importantly, both proteins could interact in the absence of other viral proteins and their co-expression resulted in accumulation of UL30 to the cell nucleus. Treatment of cells with Ivermectin, an anti-parasitic drug which has been recently identified as an inhibitor of importin α/ß-dependent nuclear transport, reduced UL42 nuclear import and specifically reduced BoHV-1 replication in a dose-dependent manner, while virus attachment and entry into cells were not affected. Therefore, this study provides a new option of antiviral therapy for BoHV-1 infection with Ivermectin.

3.
Microb Pathog ; 118: 146-153, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29551438

RESUMO

Most enveloped viruses exploit complex cellular pathways for assembly and egress from the host cell, and the large DNA virus Herpes simplex virus 1 (HSV-1) makes no exception, hijacking several cellular transport pathways for its glycoprotein trafficking and maturation, as well as for viral morphogenesis and egress according to the envelopment, de-envelopment and re-envelopment model. Importantly Rab GTPases, widely distributed master regulators of intracellular membrane trafficking pathways, have recently being tightly implicated in such process. Indeed, siRNA-mediated genetic ablation of specific Rab proteins differently affected HSV-1 production, suggesting a complex role of different Rab proteins in HSV-1 life cycle. In this review, we discuss how different Rabs can regulate HSV-1 assembly/egress and the potential therapeutic applications of such findings for the management of HSV-1 infections.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Fenômenos Fisiológicos Virais , Liberação de Vírus/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Glicoproteínas/metabolismo , Herpesvirus Humano 1/patogenicidade , Humanos , Transporte Proteico/fisiologia , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/genética , Montagem de Vírus/fisiologia , Proteínas rab1 de Ligação ao GTP/fisiologia , Proteínas rab27 de Ligação ao GTP/fisiologia , Proteínas rab5 de Ligação ao GTP/fisiologia
4.
Oncotarget ; 8(55): 94462-94480, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212242

RESUMO

Bovine herpesvirus 1 (BoHV-1) UL21 is a tegument protein thought to be indispensable for efficient viral growth but its precise function in BoHV-1 is currently unknown. To determine the function of UL21 in BoHV-1 replication, we constructed a mutant virus bearing a UL21 deletion (vBoHV-1-∆UL21) and its revertant virus, vBoHV-1-∆UL21R, in which the UL21 gene was restored using a bacterial artificial chromosome system. The replication of vBoHV-1-∆UL21 was 1,000-fold lower and its plaque size was 85% smaller than those of the wild-type virus (BoHV-1). An ultrastructural analysis showed that deletion of UL21 led to an un-enveloped capsid accumulation in the cytoplasm, whereas nucleocapsid egress was not impaired, suggesting that UL21 is critical for secondary envelopment in BoHV-1. Co-immunoprecipitation assays revealed that HA-tagged UL21 pulled down UL16, suggesting that these two proteins form a complex, and this was further confirmed by a co-immunofluorescence assay. Taken together, these data provide evidence that UL21 plays critical roles in BoHV-1 secondary envelopment, and UL16 is likely to be involved in these activities.

5.
Oncotarget ; 7(11): 12235-53, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26934330

RESUMO

Bovine herpesvirus 1 (BoHV-1) UL51 protein (pUL51) is a tegument protein of BoHV-1 whose function is currently unknown. Here, we aimed to illustrate the specific role of pUL51 in virion morphogenesis and its importance in BoHV-1 virulence. To do so, we constructed a BoHV-1 bacterial artificial chromosome (BAC). We used recombinant BAC and transgenic techniques to delete a major part of the UL51 open reading frame. Deletion of pUL51 resulted in severe viral growth defects, as evidenced by lower single and multi-step growth kinetics, reduced plaque size, and the accumulation of non-enveloped capsids in the cytoplasm of infected cells. Using tagged BoHV-1 recombinant viruses, it was determined that the pUL51 protein completely co-localized with the cis-Golgi marker protein GM-130. Taken altogether, pUL51 was demonstrated to play a critical role in BoHV-1 growth and it is involved in viral maturation and egress. Moreover, an in vivo analysis showed that the pUL51 mutant exhibited reduced virulence in rabbits, with no clinical signs, no nasal shedding of the virus, and no detectable serum neutralizing antibodies. Therefore, we conclude that the BoHV-1 pUL51 is indispensable for efficient viral growth in vitro and is essential for virulence in vivo.


Assuntos
Herpesvirus Bovino 1/fisiologia , Proteínas Estruturais Virais/genética , Animais , Bovinos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/crescimento & desenvolvimento , Herpesvirus Bovino 1/patogenicidade , Coelhos , Proteínas Estruturais Virais/deficiência , Virulência , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA