Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Front Pharmacol ; 14: 1236173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900167

RESUMO

Cancer has been one of the leading causes of mortality worldwide over the past few years. Some progress has been made in the development of more effective cancer therapeutics, resulting in improved survival rates. However, the desired outcome in the form of successful treatment is yet to be achieved. There is high demand for the development of innovative, inexpensive, and effective anticancer treatments using natural resources. Natural compounds have been increasingly discovered and used for cancer therapy owing to their high molecular diversity, novel biofunctionality, and minimal side effects. These compounds can be utilized as chemopreventive agents because they can efficiently inhibit cell growth, control cell cycle progression, and block several tumor-promoting signaling pathways. PI3K is an important upstream protein of the PI3K-Akt-mTOR pathway and a well-established cancer therapeutic target. This study aimed to explore the small molecules, natural flavonoids, viz. quercetin, luteolin, kaempferol, genistein, wogonin, daidzein, and flavopiridol for PI3Kγ kinase activity inhibition. In this study, the binding pose, interacting residues, molecular interactions, binding energies, and dissociation constants were investigated. Our results showed that these flavonoids bound well with PI3Kγ with adequate binding strength scores and binding energy ranging from (-8.19 to -8.97 Kcal/mol). Among the explored ligands, flavopiridol showed the highest binding energy of -8.97 Kcal/mol, dock score (-44.40), and dissociation constant term, pKd of 6.58 against PI3Kγ. Based on the above results, the stability of the most promising ligand, flavopiridol, against PI3Kγ was evaluated by molecular dynamics simulations for 200 ns, confirming the stable flavopiridol and PI3Kγ complex. Our study suggests that among the selected flavonoids specifically flavopiridol may act as potential inhibitors of PI3Kγ and could be a therapeutic alternative to inhibit the PI3Kγ pathway, providing new insights into rational drug discovery research for cancer therapy.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37513094

RESUMO

The present study applied a nano-synergistic approach to enhance besifloxacin's potency via nano-formulating besifloxacin on gold nanoparticles (Besi-AuNPs) and adding quercetin as a natural synergistic compound. In fact, a one-pot AuNP synthesis approach was applied for the generation of Besi-AuNPs, where besifloxacin itself acted as a reducing and capping agent. Characterization of Besi-AuNPs was performed by spectrophotometry, DLS, FTIR, and electron microscopy techniques. Moreover, antibacterial assessment of pure besifloxacin, Besi-AuNPs, and their combinations with quercetin were performed on Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. UV-spectra showed a peak of AuNPs at 526 nm, and the electron microscopy-based size was estimated to be 15 ± 3 nm. The effective MIC50 concentrations of besifloxacin after loading on AuNPs were reduced by approximately 50% against the tested bacterial strains. Interestingly, adding quercetin to Besi-AuNPs further enhanced their antibacterial potency, and isobologram analysis showed synergistic potential (combination index below 1) for different quercetin and Besi-AuNP combinations. However, Besi-AuNPs and quercetin combinations were most effective against Gram-positive S. aureus in comparison to Gram-negative P. aeruginosa and E. coli. Their potent activity against S. aureus has its own clinical significance, as it is one the main causative agents of ocular infection, and besifloxacin is primarily used for treating infectious eye diseases. Thus, the outcomes of the present study could be explored further to provide better medication for eye infections caused by resistant pathogens.

3.
R Soc Open Sci ; 10(2): 221458, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778948

RESUMO

Tackling the ever-looming threat of antibiotic resistance remains a challenge for clinicians and microbiologists across the globe. Sulfhydryl variable (SHV) is a known bacterial enzyme associated with antibiotic resistance. The SHV enzyme has many variants. The present article describes identification and molecular interaction of a putative inhibitor with the bacterial SHV enzyme as a step towards novel antibacterial drug discovery. The MCULE-platform was used for screening a collection of 5 000 000 ligand molecules to evaluate their binding potential to the bacterial SHV-1 enzyme. Estimation of pharmacokinetic features was realized with the aid of the 'SWISS ADME' tool. Toxicity-checks were also performed. The docked complex of 'the top screened out ligand' and 'the bacterial SHV-1 protein' was subjected to molecular dynamics simulation of 101 ns. The obtained ligand molecule, 1,1'-(4H,8H-Bis[1,2,5]oxadiazolo[3,4-b:3',4'-e]pyrazine-4,8-diyl)diethanone, displayed the most favourable binding interactions with bacterial SHV-1. A total of 15 amino acid residues were found to hold the ligand in the binding site of SHV-1. Noticeably, 12 of the 15 residues were found as common to the binding residues of the reference (PDB ID: 4ZAM). The RMSD values plotted against the simulation time showed that nearby 11 ns, equilibrium was reached and, thenceforth, the 'SHV-1-Top ligand' complex remained typically stable. Starting from around 11 ns and straight to 101 ns, the backbone RMSD fluctuations were found to be confined inside a range of 1.0-1.6 Å. The ligand, 1,1'-(4H,8H-Bis[1,2,5]oxadiazolo[3,4-b:3',4'-e]pyrazine-4,8-diyl)diethanone, satisfied ADMET criteria. Furthermore, the practicability of the described 'SHV-1-Top ligand' complex was reinforced by a comprehensive molecular dynamics simulation of 101 ns. This ligand hence can be considered a promising lead for antibiotic design against SHV-1 producing resistant bacteria, and thus warrants wet laboratory evaluation.

4.
J Biomol Struct Dyn ; 41(17): 8362-8372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36224195

RESUMO

A 'Thumb Rule for Antibiotic Design' against bacteria can be given as, 'The minimum pace of drug design ought to match the swiftness with which bacteria display cutting-edge resistance mechanisms; thereby outwitting the antibiotics and, in turn, the researchers'. Occurrence of drug resistance attributable to CXTM-variants in bacterial pathogens is widespread. In line with our above proposed thumb rule, the present article employed concatenation of virtual screening, docking and simulation to identify a potent in silico validated anti-CTXM-14 ligand. Specifically, this research used the 'MCULE' drug discovery platform to screen a total of 5 million candidate inhibitors to evaluate their binding efficacy with an antibiotic resistance enzyme, CTXM-14 found in bacterial pathogens. A new median approach between 'structure' and 'ligand'-based protocols was employed. Pharmacokinetic profiling was achieved by 'SWISS ADME'. Safety profile for humans was appraised by 'Toxicity Checker'. The complex consisting of the 'Top ligand' (obtained from the screen) harbored within the active pocket of the bacterial CTXM-14 was subjected to 60 ns molecular dynamics simulation with the aid of licensed YASARA STRUCTURE v.21.8.27. Complex tasks were performed by YANACONDA. Fine resolution figures (notably, plots generated from trajectory analyses) were constructed. Simulation snaps were acquired at every 250 picoseconds of the run. The ligand having the IUPAC name as 1-Amino-3-(4-hydroxyphenyl)pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile demonstrated the overall best binding with CTXM-14. Fifteen amino acid residues were found to line the interacting pocket. Remarkably, all of these interacting residues were found to be present among the interacting residues displayed by the reference complex as well, i.e. CTXM-14:Vaborbactam complex (PDB ID 6V7H). A total of 240 simulation snaps were retrieved. The RMSD plot revealed that a plateau was achieved at 32 ns, after which the backbone RMSD fluctuations remained confined within 1.4-2 Å. Video recording of molecular actions was also achieved. In conclusion, this study provides a fresh lead molecule, 1-Amino-3-(4-hydroxyphenyl)pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile against bacterial CTXM-14 protein. The study utilized a new median approach between 'structure' and 'ligand'-based drug design. The lead molecule passed ADMET conditions and an array of medicinal chemistry filters, and is further supported by a stable molecular dynamics. An acceptable skin permeation supports its probable use in antibiotic creams. Moreover, the study provides a clear 'Thumb Rule for Antibiotic Design' against bacteria, which although often assumed, can be clearly stated for the first time. Synthesis of the screening-proposed molecule followed by in-vitro and in-vivo validation is highly recommended.Communicated by Ramaswamy H. Sarma.

5.
Front Pharmacol ; 14: 1231671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273823

RESUMO

The epidermal growth factor receptor (EGFR) plays a crucial role in regulating cellular growth and survival, and its dysregulation is implicated in various cancers, making it a prime target for cancer therapy. Natural compounds known as catechins have garnered attention as promising anticancer agents. These compounds exert their anticancer effects through diverse mechanisms, primarily by inhibiting receptor tyrosine kinases (RTKs), a protein family that includes the notable member EGFR. Catechins, characterized by two chiral centers and stereoisomerism, demonstrate variations in chemical and physical properties due to differences in the spatial orientation of atoms. Although previous studies have explored the membrane fluidity effects and transport across cellular membranes, the stereo-selectivity of catechins concerning EGFR kinase inhibition remains unexplored. In this study, we investigated the stereo-selectivity of catechins in inhibiting EGFR kinase, both in its wild-type and in the prevalent L858R mutant. Computational analyses indicated that all stereoisomers, including the extensively studied catechin (-)-EGCG, effectively bound within the ATP-binding site, potentially inhibiting EGFR kinase activity. Notably, gallated catechins emerged as superior EGFR inhibitors to their non-gallated counterparts, revealing intriguing binding trends. The top four stereoisomers exhibiting high dock scores and binding energies with wild-type EGFR comprise (-)-CG (-)-GCG (+)-CG, and (-)-EGCG. To assess dynamic behavior and stability, molecular dynamics simulations over 100 ns were conducted for the top-ranked catechin (-)-CG and the widely investigated catechin (-)-EGCG with EGFR kinase. This study enhances our understanding of how the stereoisomeric nature of a drug influences inhibitory potential, providing insights that could guide the selection of specific stereoisomers for improved efficacy inexisting drugs.

6.
Semin Cancer Biol ; 86(Pt 2): 645-663, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35405339

RESUMO

Evident role of inflammation in cancer development and progression prompted the application of anti-inflammatory medications as a therapeutic strategy. The major bottleneck for the anti-inflammatory drugs is targeted delivery to the cancerous cell. Nanotechnology has provided safe and effective way for targeted cancer therapy. However, the complex and heterogeneous traits of cancer, incomplete information on fate and behavior of nanomedicines in human body, and lack of large-scale commercial production have slowed down the pace of nanomedicines development. To shift the paradigm from conventional cancer therapeutics to anti-inflammatory nano-therapeutics, thorough understanding of the strategies, progress, success, challenges and future perspectives are needed. The present review highlights all these aspects in addition to innovations patented on them. In fact, patent plays a vital role in protection of innovations, and further translation of lab-scale outcomes into bedside medications. Thus, the review introspects and recognizes the glitches in successful clinical translation of anti-inflammatory nanomedicines.


Assuntos
Nanomedicina , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Nanotecnologia , Neoplasias/tratamento farmacológico , Inflamação/tratamento farmacológico
7.
J Biomol Struct Dyn ; 40(5): 2254-2263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33089743

RESUMO

There are a significant number of cases whereby cancer patients belonging to the old age group additionally suffer from cognition decline (a hallmark feature of Alzheimer's disease). Hence, it is understandable that it would be a boon if certain drug molecules could provide health benefits to a patient suffering from cancer as well as Alzheimer's disease. The objective of the work was to identify anticancer molecule(s) whose chemical-skeleton could be used as 'seed' for future design of dual-acting drugs against Alzheimer's disease and cancer. The study employed criterion-based search, docking, SWISS-ADME-profiling, ▵ASA-calculations, molecular-overlay and 'MoMA'-simulation to query possible binding of selected anticancer molecules with human brain acetylcholinesterase (AChE). Molecular interactions of all of the top ranking ligands were analyzed. 'BOILED-egg' model was employed to query brain-penetration of the ligands. A detailed molecular-simulation-analysis was performed. Snapshots of different stages of dynamic molecular interactions (selected from 254 pdb files) were captured by MoMA LigPath, a robotics inspired simulation algorithm. The study concluded that chemical skeletons of 'Niraparib' and 'Ponatinib' might be used as 'seed(s)' for design of such drugs. If successfully materialized in future, this approach could decrease the total number of daily pills that an old patient needs to take. Furthermore, novel anticancer drugs could be synthesized that do not inhibit AChE (e.g. by removal/modification of moieties that are crucial to binding of anticancer drug to AChE) even if those happen to be 'Blood Brain Barrier'-permeable. Alternatively, fresh AChE-inhibitors could be designed based on the scaffolds of the aforementioned anticancer drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
8.
Ann Med ; 53(1): 2332-2344, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34889159

RESUMO

INTRODUCTION: Alzheimer's disease (AD), the most predominant cause of dementia, has evolved tremendously with an escalating frequency, mainly affecting the elderly population. An effective means of delaying, preventing, or treating AD is yet to be achieved. The failure rate of dementia drug trials has been relatively higher than in other disease-related clinical trials. Hence, multi-targeted therapeutic approaches are gaining attention in pharmacological developments. AIMS: As an extension of our earlier reports, we have performed docking and molecular dynamic (MD) simulation studies for the same 13 potential ligands against beta-site APP cleaving enzyme 1 (BACE-1) and γ-secretase as a therapeutic target for AD. The In-silico screening of these ligands as potential inhibitors of BACE-1 and γ-secretase was performed using AutoDock enabled PyRx v-0.8. The protein-ligand interactions were analyzed in Discovery Studio 2020 (BIOVIA). The stability of the most promising ligand against BACE-1 and γ-secretase was evaluated by MD simulation using Desmond-2018 (Schrodinger, LLC, NY, USA). RESULTS: The computational screening revealed that the docking energy values for each of the ligands against both the target enzymes were in the range of -7.0 to -10.1 kcal/mol. Among the 13 ligands, 8 (55E, 6Z2, 6Z5, BRW, F1B, GVP, IQ6, and X37) showed binding energies of ≤-8 kcal/mol against BACE-1 and γ-secretase. For the selected enzyme targets, BACE-1 and γ-secretase, 6Z5 displayed the lowest binding energy of -10.1 and -9.8 kcal/mol, respectively. The MD simulation study confirmed the stability of BACE-6Z5 and γ-secretase-6Z5 complexes and highlighted the formation of a stable complex between 6Z5 and target enzymes. CONCLUSION: The virtual screening, molecular docking, and molecular dynamics simulation studies revealed the potential of these multi-enzyme targeted ligands. Among the studied ligands, 6Z5 seems to have the best binding potential and forms a stable complex with BACE-1 and γ-secretase. We recommend the synthesis of 6Z5 for future in-vitro and in-vivo studies.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Idoso , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular
9.
Folia Microbiol (Praha) ; 66(6): 897-916, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34699042

RESUMO

Recent advancement in manipulation techniques of gut microbiota either ex vivo or in situ has broadened its plausible applicability for treating various diseases including cardiovascular disease. Several reports suggested that altering gut microbiota composition is an effective way to deal with issues associated with managing cardiovascular diseases. However, actual translation of gut microbiota manipulation-based techniques into cardiovascular-therapeutic approach is still questionable. This review summarized the evidence on challenges, opportunities, recent development, and future prospects of gut microbiota manipulation for targeting cardiovascular diseases. Initially, issues associated with current cardiovascular diseases treatment strategy, association of gut microbiota with cardiovascular disease, and its influence on cardiovascular drugs were discussed, followed by applicability of gut microbiota manipulation as a cardiovascular disease intervention strategy along with its challenges and future prospects. Despite the fact that the gut microbiota is rugged, interventions like probiotics, prebiotics, synbiotics, fecal microbiota transplantation, fecal virome transplantation, antibiotics, diet changes, and exercises could manipulate it. Advanced techniques like administration of engineered bacteriophages and bacteria could also be employed. Intensive exploration revealed that if sufficiently controlled approach and proper monitoring were applied, gut microbiota could provide a compelling answer for cardiovascular therapy.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Probióticos , Simbióticos , Doenças Cardiovasculares/terapia , Transplante de Microbiota Fecal , Humanos , Prebióticos
10.
Mol Biol Rep ; 48(10): 6695-6702, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34431037

RESUMO

BACKGROUND: Complex coronary atherosclerotic lesions often lead to coronary occlusion, clinically represented as a single-vessel disease (SVD) and multivessel disease (MVD). These occlusions could hinder the blood flow in coronary arteries that affects appropriate management of the CVD. The current study intended to genotype interleukin (IL)-18 promoter's hotspots (rs187238, rs1946518, and rs1946519) and their possible association with coronary artery stenosis. MATERIAL AND METHODS: The IL-18 promoter genotyping was performed by the Sanger method along with the examination of biochemical parameters in 125 study subjects categorized into three groups, viz. controls, SVD and MVD. RESULTS: The current study observed a significant association of diabetes, hypertension, and dyslipidemia between the studied group's viz. healthy controls, SVD, and MVD. Fasting blood sugar and glycosylated hemoglobin (HBA1C) were also significantly enhanced from 4.82 vs. 8.01 and 4.33 vs. 8.27, in SVD, and MVD respectively. Despite the visible differences in the pattern of genotypic and allelic expressions, the current study did not show any statistically significant correlation with IL-18 promoter polymorphism at its hotspots with controls, SVD, and MVD subjects. The only exception of the above results was the distribution of allelic frequency at the rs1946519 hotspot, where a significant change (P < 0.05) was observed. CONCLUSION: This study is of additional value to our previous reports, revealing the pattern of genotypes and allelic frequency of IL-18 promoters in a small cohort of Saudi ethnicity. Further investigations on larger sample size are recommended to envisage the presence of functional mutations in the IL-18 gene that could establish or rule out the possible association of IL-18 polymorphism with SVD and MVD.


Assuntos
Estenose Coronária/genética , Predisposição Genética para Doença , Técnicas de Genotipagem , Interleucina-18/genética , Regiões Promotoras Genéticas/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene/genética , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Arábia Saudita
11.
Antibiotics (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919115

RESUMO

BACKGROUND: Multidrug resistant bacteria are a major therapeutic challenge. CTX-M-type enzymes are an important group of class A extended-spectrum ß-lactamases (ESBLs). ESBLs are the enzymes that arm bacterial pathogens with drug resistance to an array of antibiotics, notably the advanced-generation cephalosporins. The current need for an effective CTX-M-inhibitor is high. OBJECTIVE: The aim of the current study was to identify a promising anti-CTX-M-15 ligand whose chemical skeleton could be used as a 'seed-molecule' for future drug design against resistant bacteria. METHODS: Virtual screening of 5,000,000 test molecules was performed by 'MCULE Drug Discovery Platform'. 'ADME analyses' was performed by 'SWISS ADME'. TOXICITY CHECKER of MCULE was employed to predict the safety profile of the test molecules. The complex of the 'Top inhibitor' with the 'bacterial CTX-M-15 enzyme' was subjected to 102.25 ns molecular dynamics simulation. This simulation was run for 3 days on a HP ZR30w workstation. Trajectory analyses were performed by employing the macro 'md_analyze.mcr' of YASARA STRUCTURE version 20.12.24.W.64 using AMBER14 force field. YANACONDA macro language was used for complex tasks. Figures, including RMSD and RMSF plots, were generated. Snapshots were acquired after every 250 ps. Finally, two short videos of '41 s' and '1 min and 22 s' duration were recorded. RESULTS: 5-Amino-1-(2H-[1,2,4]triazino[5,6-b]indol-3-yl)-1H-pyrazole-4-carbonitrile, denoted by the MCULE-1352214421-0-56, displayed the most efficient binding with bacterial CTX-M-15 enzyme. This screened molecule significantly interacted with CTX-M-15 via 13 amino acid residues. Notably, nine amino acid residues were found common to avibactam binding (the reference ligand). Trajectory analysis yielded 410 snapshots. The RMSD plot revealed that around 26 ns, equilibrium was achieved and, thereafter, the complex remained reasonably stable. After a duration of 26 ns and onwards until 102.25 ns, the backbone RMSD fluctuations were found to be confined within a range of 0.8-1.4 Å. CONCLUSION: 5-Amino-1-(2H-[1,2,4]triazino[5,6-b]indol-3-yl)-1H-pyrazole-4-carbonitrile could emerge as a promising seed molecule for CTX-M-15-inhibitor design. It satisfied ADMET features and displayed encouraging 'simulation results'. Advanced plots obtained by trajectory analyses predicted the stability of the proposed protein-ligand complex. 'Hands on' wet laboratory validation is warranted.

12.
EXCLI J ; 20: 1597-1607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35024017

RESUMO

Alzheimer's disease is a topic of deep research interest across the global scientific community. Butyrylcholinesterase (BuChE) is an important enzyme, and an interesting anti-Alzheimer's target. Identification or fresh design of promising BuChE-inhibitors is warranted. Virtual screening supported by molecular dynamics simulations has emerged as a key component of present drug-discovery cascades. The research piece aimed at identification of a putative BuChE-inhibitor as a fresh molecular frame that might aid drug design in the context of Alzheimer's disease. The study utilized 'MCULE' to screen a set of 5 million ligands to test their ability to bind to human BuChE. Pharmacokinetic profiling was achieved by the 'SWISS ADME' program. Toxicities were duly assessed. YASARA STRUCTURE version 20.10.4.W.64 was employed to run 133 ns molecular dynamics (MD) simulation for the complex of 'the top screened out inhibitor' and 'the human BuChE enzyme'. The simulation was executed for approx. 4 days (~93 hrs) on an HP ZR30w workstation. YANACONDA, a special language contained in YASARA STRUCTURE was employed to perform complex tasks. Fine resolution figures (notably the RMSD vs time plot) were created. Snapshots were extracted at every 250 ps. The selected ligand, (3-Bromophenyl)[5-(4-chlorophenyl)-5-hydroxy-3-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-1-yl]methanone, exhibited the best overall binding with human BuChE. It interacted with human BuChE through 19 residues. Markedly, 9 of the 19 residues were confirmed to be matching to those of the reference complex (PDB ID 5DYW). Trajectory analysis returned 533 snapshots. The RMSD versus time plot indicated that around 22 ns, equilibrium was achieved and, from then on, the 'BuChE-Top inhibitor' complex remained predominantly stable. From 22 ns and onwards till 133 ns, the backbone RMSD fluctuations were observed to remain limited within a range of 1.2-1.9 Å. The molecule, (3-Bromophenyl)[5-(4-chlorophenyl)-5-hydroxy-3-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-1-yl]methanone, satisfied ADMET requirements. Additionally, the feasibility of the proposed enzyme-inhibitor complex was supported by an adequately extended MD simulation of 133 ns. Hence, the proposed molecule could be a likely lead for designing inhibitor(s) against human BuChE. Scope remains for validatory wet laboratory investigation.

13.
J Biomol Struct Dyn ; 39(14): 5083-5092, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32588759

RESUMO

Alzheimer's disease (AD) is a growing global health concern that affects 10% of the population aged above 65 years. A growing body of evidence indicates that multi-targeted drugs might be useful therapeutic options owing to the heterogeneity of AD pathology. The current study exploited advanced computational biology tools to identify ligands that might display effective binding to two protein targets in the context of AD. The present study used in silico virtual screening of small molecules library to identify effectiveness against two AD targets viz. acetyl cholinesterase (AChE) and glycogen synthase kinase-3ß (GSK-3ß). PyRX-Python prescription with AutodockVina was used to generate binding energy profiles. Further screening was accomplished using SwissADME and molecular interaction studies. The present study obtained 48 ligands (absolute binding energy >8 kcal/mol), by virtual screening of 100 ligands. Among those, 13 ligands (BRW, 6VK, 6Z5, SMH, X37, 55E, 65 A, IQ6, 6VL, 6VM, F1B, 6Z2 and GVP) were selected based on blood brain barrier (BBB) permeability, acceptable ADME properties as well as their molecular interaction profiles with the aforementioned AD-targets. The present study has predicted certain molecules that appear worthy to be tested for effectiveness against two AD targets, namely AChE and GSK-3ß. However, the results warrant further wet laboratory validation, as computational studies are merely predictive in nature. This approach might be useful for future treatment of AD.Communicated by Ramaswamy H. Sarma.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Idoso , Doença de Alzheimer/tratamento farmacológico , Simulação por Computador , Glicogênio Sintase Quinase 3 beta , Humanos , Ligantes , Simulação de Acoplamento Molecular
14.
Semin Cancer Biol ; 64: 19-28, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100322

RESUMO

Cancer and autoimmune diseases are the two devastating conditions that together constitute a leading health problem worldwide. The rising burden of these disorders in the developing world demands a multifaceted approach to address the challenges it poses. Understanding the root causes and specific molecular mechanisms by which the progression of the diseases takes place is need of the hour. A strong inflammatory background and common developmental pathways, such as activation of immune cells, proliferation, increased cell survival and migration which are controlled by growth factors and inflammatory cytokines have been considered as the critical culprits in the progression and complications of these disorders. Enzymes are the potential immune modulators which regulate various inflammatory events and can break the circulating immune complexes via macrophages production. In the current manuscript, we have uncovered the possible role of proteolytic enzymes in the pathogenesis and progression of cancer and autoimmune diseases. In the light of the available scientific literature, we advocate in-depth comprehensive studies which will shed light towards the role of proteolytic enzymes in the modulation of inflammatory responses in cancer and autoimmune diseases together.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Neoplasias/imunologia , Peptídeo Hidrolases/metabolismo , Animais , Doenças Autoimunes/complicações , Doenças Autoimunes/enzimologia , Doenças Autoimunes/patologia , Citocinas/metabolismo , Humanos , Neoplasias/complicações , Neoplasias/enzimologia , Neoplasias/patologia , Peptídeo Hidrolases/imunologia
15.
J Infect Public Health ; 13(1): 94-100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31279801

RESUMO

BACKGROUND: Whole genome sequencing has revolutionized epidemiological investigations of multidrug-resistant pathogenic bacteria worldwide. Aim of this study was to perform comprehensive characterization of ESBL-positive isolates of Escherichia coli obtained from clinical samples at the King Abdulaziz University Hospital utilizing whole genome sequencing. METHODS: Isolates were identified by MALDI-TOF mass spectrometry. Genome sequencing was performed using a paired-end strategy on the MiSeq platform. RESULTS: Nineteen isolates were clustered into different clades in a phylogenetic tree based on single nucleotide polymorphisms in core genomes. Seventeen sequence types were identified in the extended-spectrum ß-lactamase (ESBL)-positive isolates, and 11 subtypes were identified based on distinct types of fimH alleles. Forty-one acquired resistance genes were found in the 19 genomes. The blaCTX-M-15 gene, which encodes ESBL, was found in 15 isolates and was the most predominant resistance gene. Other antimicrobial resistance genes (ARGs) found in the isolates were associated with resistance to tetracycline (tetA), aminoglycoside [aph(3″)-Ib, and aph(6)-Id], and sulfonamide (sul1, and sul2). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA were commonly found in several genomes. CONCLUSION: Several other ARGs were found in CTX-M-positive E. coli isolates confer resistance to clinically important antibiotics used to treat infections caused by Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Variação Genética , Genoma Bacteriano , Escherichia coli/enzimologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Arábia Saudita , Centros de Atenção Terciária/estatística & dados numéricos , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , beta-Lactamases/genética
16.
Crit Rev Eukaryot Gene Expr ; 29(3): 251-261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679235

RESUMO

Cancer continues to remain a disease of scientific concern. Significant interest in targeting the Polo-Box-Domain (PBD) of Polo-like-kinase-1 (PLK-1) by novel ligands has arisen. The 'cleft' constituted by amino acid residues W414, H538, and K540 is the traditional target of PLK-1-PBD-inhibitors. However, this 'cleft' is merely a small part of the larger 'Y'-shaped cavity present therein. The objective of this study was to discover inhibitors of the PLK-1-PBD precisely directed against its trimodular 'Y'-pocket. High-throughput structure-based virtual screening (SBVS) of more than 5 million ligands against the aforementioned PLK-1 'Y'-pocket was performed. The SBVS hits were successively subjected to pass through various filters: VINA score ranking, toxicity checker, 'Special Criteria'-filtration, holistic tri-modular 'Y'-pocket interaction check, drug-likeness filters, and medicinal chemistry filters. Accordingly, we arrived at a single top ligand, 'SHAZ-i.' The top ligand, 3-{2-[(2-Methyl-2-propanyl)sulfonyl]phenyl}-5-phenyl-1,2-oxazole-4-carboxamide, displayed a robust interaction with the target crevice through 15 amino acid residues, an acceptable ΔG value of -7.8 kcal/mol, and a favorable pharmacokinetic profile with no adverse effects on humans. Hence, 3-{2-[(2-Methyl-2-propanyl)sulfonyl]phenyl}-5-phenyl-1,2-oxazole-4-carboxamide could emerge as a potent PLK-1-PBD inhibitor or might act as a 'seed' molecule for design of future inhibitors with a closely related backbone structure.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Biologia Computacional/métodos , Humanos , Neoplasias/patologia , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química , Quinase 1 Polo-Like
17.
Crit Rev Eukaryot Gene Expr ; 29(3): 277-285, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679237

RESUMO

Fibrinogen is an important coagulation factor that plays a key role in thrombus formation. The co-existence of CAD, insulin resistance (IR) and coagulation incongruity are believed to exacerbate the existing condition towards more lethal pathological events.The purpose of current study was to find out a possible association between fibrinogen and IR in CAD patients. The study population consist of 135 participants; 82 angiographically confirmed CAD patients who visited the outpatient department at King Abdulaziz University Hospital (KAUH), Jeddah and 53 healthy control individuals. Peripheral blood samples were collected from CAD patients and healthy control individuals. Various biochemical parameters such as complete blood count, C-reactive protein (CRP), glycosylated hemoglobin (HbA1c), insulin, C-peptide, lipid profile, platelet, partial thromboplastin time (PTT), fibrinogen and D-dimer levels were measured by the use of different analytical methods. Calculation of homeostasis model assessment (HOMA) and non-HDL were done by using online tools. Among the studied parameters, majority of the conventional risk factors were found to be significantly increased in CAD patients compared with control individuals. Different coagulation components such as fibrinogen (223.8 vs. 394 mg/dL), D-dimer (0.25 vs. 0.63 mg/L), platelet (222.9 vs. 245.9 K/uL) and PTT (27.6 vs. 29.6 seconds) were also found to be significantly enhanced in CAD patients. Based on the severity of IR [HOMA index up to 3 and ≥ 3], comparison with different parameters such as fibrinogen, D-dimer, C-peptide and insulin in CAD groups were also made. As per HOMA index, fibrinogen level was found to be significantly increased in below and above 3 categories. Moreover, C-peptide (P < 0.01) and insulin (P < 0.001) levels also showed significant association with both HOMA groups. Our study provides an insight towards the association of fibrinogen and IR in CAD patients with respect to severity.


Assuntos
Biomarcadores/sangue , Angiografia Coronária/métodos , Doença da Artéria Coronariana/complicações , Fibrinogênio/análise , Intolerância à Glucose/diagnóstico , Resistência à Insulina , Estudos de Casos e Controles , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco
18.
Pak J Pharm Sci ; 32(2): 521-528, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31081761

RESUMO

The purpose of the current study was to examine immobilization stress-induced antioxidant defense changes and estimation of the antioxidant potential of pre and post stress treatment of aqueous garlic extract in rat's liver. For this purpose, male Albino Wistar rats were treated with aqueous garlic extract both pre and after 6 h of immobilization stress. Pro-oxidant status of rat liver was evaluated by determining the levels of reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), glucose, uric acid and the activities of super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). In response to 6 h of immobilization stress a significant rise in the level of above mentioned liver enzymes were recorded. However, SOD, CAT and GST enzymatic activities showed a sharp decline. The extract treatment before and after stress, almost reverted the activities of studied biochemical parameters towards their control values. Current study highlighted the antioxidant potential of garlic extracts. Based on our study, we recommend the use of garlic extract as nutritional supplement for combating oxidative stress induced damage.


Assuntos
Alho/química , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/metabolismo , Enzimas/farmacologia , Glucose/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Ratos Wistar , Restrição Física
19.
J Cell Biochem ; 120(7): 11820-11830, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30746750

RESUMO

Alzheimer's disease, a neurodegenerative disorder continues to be an area of investigation by the international researchers' fraternity. Despite all the ongoing efforts, the effective set of promising cholinesterase inhibitors available in the market for patients' use is limited. Furthermore, the currently available drugs could provide only a palliative type of treatment instead of providing a complete cure or foolproof prevention. Hence, design/discovery of fresh drug molecules as acetylcholinesterase (AChE) inhibitors still remains an urgent requirement. The drug discovery platform, MCULE in the "structure-based virtual screening" (SBVS) mode was used for high throughput ligand screening of over five million structures targeted against the AChE catalytic site. A stepwise query was made for the SBVS input. The number of hits was narrowed down in consecutive succession via varied filtration criteria as AutoDock-Vina rankings, MCULE toxicity filtration, exclusion of ligands having less than four H-bond acceptors, filtration by ΔG cutoff, rule-of-five violation and SWISS ADME profiling. This was followed by holistic analysis of all the results, thereby leading to one promising ligand. The screened out drug molecule, MCULE-5872671137-0-1 exhibited a robust interaction with the AChE catalytic site involving 20 amino acid residues, an acceptable binding free energy of -10.2 kcal/mol in addition to a favorable SWISS ADME-profie showing no harmful effects on the human body. It can be carefully stated that the molecule, MCULE-5872671137-0-1, which is chemically (3S)-N-{4-[(4-chlorophenyl)sulfanyl]phenyl}-3-hydroxypyrrolidine-1-carboxamide could function as a significant "seed" ligand for future design of potent AChE inhibitors and/or novel neuro drugs built upon the seed-scaffold.

20.
Saudi J Biol Sci ; 26(1): 160-164, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30622421

RESUMO

Diabetes type 2 (T2D) is a very complex disorder with a large number of cases reported worldwide. There are several reported molecular targets which are being used towards drug design. In spite of extensive research efforts, there is no sure shot treatment available. One of the major reasons for this failure or restricted success in T2D research is the identification of a major/breakthrough therapeutic target responsible for the progression of T2D. It has been well documented that one of the major causes mediating the insulin resistance is the interaction of PLD1 with PED/PEA15. Herein, we have performed in silico experiments to investigate the interaction between PLD1 with PED/PEA15. Furthermore, this study has explored pertinent molecular interactions involving the self-derived peptides. The peptides identified in this study are found to be capable of restricting the interaction of these two proteins. Accordingly, the study suggests that the "self-derived peptides" could be used as promising therapeutic candidate(s) against T2D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA