Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38495633

RESUMO

Dead-corner areas in space station that untouched by the clean-up campaign often experience microorganisms outbreaks, but the microbiome of these areas has never been studied. In this study, the microbiome in a ground-based analog ``Tianhe'' core module of China Space Station was first investigated during a 50-day three-crew occupation. Dead-corner areas were receiving attention by adopting a new sampling method. Results indicate that the astronauts occupation did not affect the dominant bacteria community, but affected a small proportion. Due to the frequent activity of astronauts in the work and sleep areas, the biomarkers in these two areas are common human skin surface and gut microorganisms, respectively. For areas that astronaut rarely visits, the biomarkers in which are common environmental microbial groups. Fluorescence counting showed that 70.12-84.78% of bacteria were alive, with a quantity of 104-105 cells/100 cm2. With the occupation time extension, the number of microorganisms increased. At the same sampling time, there was no significant bioburden difference in various locations. The cultivable bioburden ranged from 101 to 104 colony forming unit (CFU)/100 cm2, which are the following eight genera Penicillium, Microsphaeropsis, Stachybotrys, Humicola, Cladosporium, Bacillus, Planomicrobium, and Acinetobacter. Chryseomicrobium genus may be a key focus for future microbial prevention and control work.

2.
J Biomol Struct Dyn ; : 1-11, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247255

RESUMO

Non-muscle invasive bladder cancer (NMIBC) refers to a subtype of bladder carcinoma where cancer is localized in the inner lining of bladder. NMIBC consider as one of most costly malignancy and requires significant surgical and therapeutic measure. However, recurrence and progression of tumor is common in treated patients. Here we presented an integrated OMICs approach for the identification and inhibition of NMIBC specific genes. We utilized a case study where three group of patients were compared: 1) Relapsed tumors 2) recurrent tumors and 3) tumor in progression. Common transcriptome signature between patients facing recurrence and progression allowed us to identify three NMIBC specific genes FLT-1, WHSC-1 and CD34. We further utilized novel approach of Co-expressed gene-set enrichment analysis (COGENA) on the differentially expressed genes of this case study. Three drugs (paroxetine, adiphenine and H-89) with role of receptors inhibition were identified and predicted as repurposed drugs for the inhibition NMIBC specific genes. We further tested this hypothesis by performing molecular docking and simulation analysis between cancer specific proteins and drugs. FLT-1 have shown significant stable interaction with both drugs paroxetine and adiphenine whereas WHSC-1 have shown compact interaction with adiphenine and H-89. In the light of these evidence, we suggest that adiphenine could be repositioned as alternate targeted medicine for the treatment of NMIBC. In the future, this study will help for strengthening the strategies development at the molecular level for the control of carcinomas at early as well as detection of active and binding site, receptor-ligand interaction and also make drug repurposing for the early treatment of the carcinomas.Communicated by Ramaswamy H. Sarma.

3.
Biol Trace Elem Res ; 202(4): 1699-1710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37454307

RESUMO

Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.


Assuntos
Células Caliciformes , Selênio , Animais , Feminino , Células Caliciformes/metabolismo , Proteína Sequestossoma-1/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Galinhas/metabolismo , Autofagia , Intestino Delgado/metabolismo
4.
J Exp Zool A Ecol Integr Physiol ; 341(1): 31-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861072

RESUMO

Cadmium is a male reproductive toxicant that interacts with a variety of pathogenetic mechanisms. However, the effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis is still ambiguous. Light microscopy, Western blot, immunohistochemistry, immunofluorescence, and quantitative polymerase chain reaction were performed to study the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis. The results indicated that in the control group, Leydig cells showed dynamic immunoreactivity and immunosignaling action with a strong positive significant secretion of 3ß-hydroxysteroid hydrogenase (3ß-HSD) in the interstitial compartment of the testis. Leydig cells showed a high active regulator mechanism of the steroidogenic pathway with increased the proteins and genes expression level of steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol (CYP11A1), cytochrome P450 cholesterol (CYP17A1), 3ß-hydroxysteroid hydrogenase (3ß-HSD) 17ß-hydroxysteroid hydrogenase (17ß-HSD), and androgen receptor (AR) that maintained the healthy and vigorous progressive motile spermatozoa. However, on treatment with cadmium, Leydig cells were irregularly dispersed in the interstitial compartment of the testis. Leydig cells showed reduced immunoreactivity and immunosignaling of 3ß-HSD protein. Meanwhile, cadmium impaired the regulatory mechanism of the steroidogenic process of the Leydig cells with reduced protein and gene expression levels of STAR, CYP11A1, CYP17A1, 3ß-HSD, 17ß-HSD, and AR in the testis. Additionally, treatment with cadmium impaired the serum LH, FSH, and testosterone levels in blood as compared to control. This study explores the hazardous effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis.


Assuntos
Hidrogenase , Células Intersticiais do Testículo , Masculino , Animais , Células Intersticiais do Testículo/química , Células Intersticiais do Testículo/metabolismo , Cádmio/metabolismo , Testosterona , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Hidroxiesteroides/metabolismo , Hidroxiesteroides/farmacologia , Hidrogenase/metabolismo , Hidrogenase/farmacologia , Espermatogênese , Colesterol/metabolismo , Colesterol/farmacologia
5.
J Biomol Struct Dyn ; : 1-9, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962848

RESUMO

Non-muscle invasive bladder cancer (NMIBC) is one of the most common type of bladder cancer. Here, we have utilized an integrated transcriptomic-computational approach to identify alternate treatments to the NMIBC. In this study, we have performed the comprehensive comparative analysis between three groups of 36 patients with non-relapsed (NR), recurrence and progressive symptoms. Differentially expressed genes involved in the pathways associated with the NMIBC were identified. In silico protein-protein interaction (PPI) network was performed to create the network of the hub genes associated with NMIBC. Further, we compared NR individuals with two cohorts of patients with recurrent and progressive symptoms that lead to the identification of three major biomarkers CD34, FLT1 and WHSC1 genes. Concurrently, PPI also suggests that they are significant hub genes responsible for disease recurrence and progression. Furthermore, targeted genes WHSC-1 and FLT-1 were subjected to virtual screening for identification phytochemical inhibitors. Docking and molecular dynamics simulations concluded that the phytochemicals anonymously named 'UNK' and '6-hydroxycyanidin' are suitable for the inhibition of the proteins causing the NMIBC. In the future, this study will help for strengthening the strategies development at the molecular level for the control of carcinomas at early as well as detection of active and binding site, receptor-ligand interaction and also make drug designing for the early treatment of the carcinomas.Communicated by Ramaswamy H. Sarma.

6.
BMC Microbiol ; 23(1): 56, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869305

RESUMO

BACKGROUND: Thermostable microorganisms are extremophiles. They have a special genetic background and metabolic pathway and can produce a variety of enzymes and other active substances with special functions. Most thermo-tolerant microorganisms from environmental samples have resisted cultivation on artificial growth media. Therefore, it is of great significance to isolate more thermo-tolerant microorganisms and study their characteristics to explore the origin of life and exploit more thermo-tolerant enzymes. Tengchong hot spring in Yunnan contains a lot of thermo-tolerant microbial resources because of its perennial high temperature. The ichip method was developed by D. Nichols in 2010 and can be used to isolate so-called "uncultivable" microorganisms from different environments. Here, we describe the first application of modified ichip to isolate thermo-tolerant bacteria from hot springs. RESULTS: In this study, 133 strains of bacteria belonging to 19 genera were obtained. 107 strains of bacteria in 17 genera were isolated by modified ichip, and 26 strains of bacteria in 6 genera were isolated by direct plating methods. 25 strains are previously uncultured, 20 of which can only be cultivated after being domesticated by ichip. Two strains of previously unculturable Lysobacter sp., which can withstand 85 °C, were isolated for the first time. Alkalihalobacillus, Lysobacter and Agromyces genera were first found to have 85 °C tolerance. CONCLUSION: Our results indicate that the modified ichip approach can be successfully applied in a hot spring environment.


Assuntos
Actinomycetales , Bacillaceae , Fontes Termais , China , Meios de Cultura
7.
Biomed Res Int ; 2022: 4237633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36317111

RESUMO

Objective: The goal of this study was to understand the possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. Methods: GEO contains datasets of gene expression, miRNA, and methylation patterns of diseased and healthy/control patients. The GSE62232 dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC and 10 healthy samples as control. GSE62232 was analysed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting the interacting genes. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analysed using GEPIA to estimate the effect of their differential expression on cancer progression. Results: We identified the top 10 hub genes through CytoHubba plugin. These included BUB1, BUB1B, CCNB1, CCNA2, CCNB2, CDC20, CDK1 and MAD2L1, NCAPG, and NDC80. NCAPG and NDC80 reported for the first time in this study while the remaining from a recently reported literature. The pathogenesis of HCC may be directly linked with the aforementioned genes. In this analysis, we found critical genes for HCC that showed recommendations for future prognostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Biologia Computacional/métodos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Perfilação da Expressão Gênica , Prognóstico , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética
8.
Biomed Res Int ; 2022: 8225494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924271

RESUMO

Invasive alien species (IAS) are considered as the second major threat to biodiversity after habitat destruction worldwide. They are aggressive competitors and dominate an ecosystem where they introduce and cause reduction in indigenous diversity. Invasive plants alter the evolutionary pathways of native species by competition, niche displacement, hybridization, introgression, predation, and ultimately extinction of native species. Biological invasion also results in economic and environmental damage and harm to human health. Invasive plants have an effective reproductive as well as dispersal mechanisms. Most invasive plants produce abundant fruits and seeds that are widely disseminated and remain viable in the soil for several years. Invasive plants may change their seed character in order to adapt themselves to the new environment and facilitate their performance. A study on seed coat sculpturing in invasive alien plants collected from Lesser Himalaya region, Pakistan, was conducted using scanning electron microscope to determine the importance of seed morphological characters as an additional tool for identification. Quantitative characters such as seed length and width, macromorphological characters including color, hilum position, and seed shape, and micromorphological characters of seed including surface patterns and periclinal and anticlinal wall of seeds were studied. Findings at the present indicate that most of the seeds were found spherical followed by ovate and elliptical in shape with smooth surface and showed terminal hilum. Almost reticulate seed patterns were observed in seeds. Majority of seeds showed raised anticlinal walls with protuberance periclinal walls. The seeds of Xanthium strumarium were observed with maximum length of 13 mm and with width of 8 mm. Length by width ratio of seeds was also calculated; it was found that maximum L/W ratio was observed in Sonchus oleraceus L., i.e., 2.66. Seed characters, both macro- and micromorphological, furnish useful data for classification and delimitation of invasive taxa. This study will help to understand the invasion mechanism in plants due to variations in seed surface, shape, and other characters. Adaptive behavior of the seed during the invasion process of the new ecosystem is also elaborated.


Assuntos
Ecossistema , Sementes , Biodiversidade , Humanos , Microscopia Eletrônica de Varredura , Paquistão , Sementes/anatomia & histologia
9.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208949

RESUMO

Nanotechnology has become a dire need of the current era and the green synthesis of nanoparticles offers several advantages over other methods. Nanobiotechnology is an emerging field that contributes to many domains of human life, such as the formulation of nanoscale drug systems or nanomedicine for the diagnosis and treatment of diseases. Medicinal plants are the main sources of lead compounds, drug candidates and drugs. This work reports the green synthesis of Ag nanoparticles (AgNPs) using the aqueous bark extract of Zanthozylum armatum, which was confirmed by a UV absorption at 457 nm. XRD analysis revealed an average size of 18.27 nm and SEM showed the particles' spherical shape, with few irregularly shaped particles due to the aggregation of the AgNPs. FT-IR revealed the critical functional groups of phytochemicals which acted as reducing and stabilizing agents. The bark extract showed rich flavonoids (333 mg RE/g) and phenolic contents (82 mg GAE/g), which were plausibly responsible for its high antioxidant potency (IC50 = 14.61 µg/mL). Extract-loaded AgNPs exhibited the highest but equal inhibition against E. coli and P. aeruginosa (Z.I. 11.0 mm), whereas methanolic bark extract inhibited to a lesser extent, but equally to both pathogens (Z.I. 6.0 mm). The aqueous bark extract inhibited P. aeruginosa (Z.I. 9.0 mm) and (Z.I. 6.0 mm) E. coli. These findings-especially the biosynthesis of spherical AgNPs of 18.27 nm-provide promise for further investigation and for the development of commercializable biomedical products.


Assuntos
Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Extratos Vegetais/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Prata , Zanthoxylum/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Astrobiology ; 20(8): 1014-1023, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32783565

RESUMO

Different methods are used for the quantification of microbial load on spacecrafts. Here, we investigated a number of methodologies currently in use with the intent to identify the most accurate methods for the quantification of microbes on low-biomass metal surfaces such as those used in China's Space Station. In a previous study, we observed a high abundance of Bacillus sp. TJ 1-1 on interior surfaces of China's Space Station, and we therefore undertook this study in which we used a range of 102 to 109 cells/100 cm2 of this strain for setting different contamination levels. Four of the most common analytical approaches (contact plate, spread plate, quantitative PCR, and BacLight™) were used to quantify the number of viable microbial cells associated with the materials of China's Space Station. Results show that, for 102 cells/100 cm2, the contact plate method is the most convenient and reliable. For microbial contamination levels ≥103 cells/100 cm2 and a sampling area of 121 cm2, the BacLight method proved to be most reliable for the detection of live cells. Moreover, a sampling area of 121 cm2 was found to be the most suitable for analysis of metal surfaces for space station interiors, which are usually low in biomass. These results establish suitable sampling and processing methodologies for microbial enumeration of metal surfaces on China's Space Station.


Assuntos
Bacillus/isolamento & purificação , Técnicas Bacteriológicas/métodos , Contaminação de Equipamentos/prevenção & controle , Astronave/normas , Astronautas , China , Humanos , Exposição Ocupacional/efeitos adversos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA