Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1278802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807776

RESUMO

Introduction: Sorghum bicolor is a promising cellulosic feedstock crop for bioenergy due to its high biomass yields. However, early growth phases of sorghum are sensitive to cold stress, limiting its planting in temperate environments. Cold adaptability is crucial for cultivating bioenergy and grain sorghum at higher latitudes and elevations, or for extending the growing season. Identifying genes and alleles that enhance biomass accumulation under early cold stress can lead to improved sorghum varieties through breeding or genetic engineering. Methods: We conducted image-based phenotyping on 369 accessions from the sorghum Bioenergy Association Panel (BAP) in a controlled environment with early cold treatment. The BAP includes diverse accessions with dense genotyping and varied racial, geographical, and phenotypic backgrounds. Daily, non-destructive imaging allowed temporal analysis of growth-related traits and water use efficiency (WUE). A genome-wide association study (GWAS) was performed to identify genomic intervals and genes associated with cold stress response. Results: The GWAS identified transient quantitative trait loci (QTL) strongly associated with growth-related traits, enabling an exploration of the genetic basis of cold stress response at different developmental stages. This analysis of daily growth traits, rather than endpoint traits, revealed early transient QTL predictive of final phenotypes. The study identified both known and novel candidate genes associated with growth-related traits and temporal responses to cold stress. Discussion: The identified QTL and candidate genes contribute to understanding the genetic mechanisms underlying sorghum's response to cold stress. These findings can inform breeding and genetic engineering strategies to develop sorghum varieties with improved biomass yields and resilience to cold, facilitating earlier planting, extended growing seasons, and cultivation at higher latitudes and elevations.

2.
Genome Res ; 34(2): 286-299, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479835

RESUMO

Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agronomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in genome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing of diverse sorghum lines (n = 363), validated the correlation of photoperiod sensitivity and variety type, and identified SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complementary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymorphisms in association studies revealed genotype-phenotype associations not observed with SNPs alone. Three-way genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP + SV data sets showed substantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability estimates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes the extensive impacts of SVs on sorghum.


Assuntos
Variação Genética , Sorghum , Sorghum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Polimorfismo de Nucleotídeo Único
3.
Methods Mol Biol ; 2539: 49-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895195

RESUMO

An indoor wireless fixed camera network was developed for an efficient, cost-effective method of extracting informative plant phenotypes in a controlled greenhouse environment. Deployed at the Donald Danforth Plant Science Center (DDPSC), this fixed camera platform implements rapid and automated plant phenotyping. The platform uses low-cost Raspberry Pi computers and digital cameras to monitor aboveground morphological and developmental plant phenotypes. The Raspberry Pi is a readily programmable, credit card-sized computer board with remote accessibility. A standard camera module connects to the Raspberry Pi computer board and generates eight-megapixel resolution images. With a fixed array, or "bramble," of Raspberry Pi computer boards and camera modules placed strategically in a greenhouse, we can capture automated, high-resolution images for 3D reconstructions of individual plants on timescales ranging from minutes to hours, capturing temporal changes in plant phenotypes.


Assuntos
Computadores , Plantas , Fenótipo , Plantas/anatomia & histologia
4.
Methods Mol Biol ; 2539: 213-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895206

RESUMO

Photosynthetic efficiency is increasingly recognized as an integration of plant responses to dynamic environments, establishing the need for data sets from both field trials and controlled environments. A robotic field scanner phenotyping platform at the University of Arizona is equipped with a high-throughput chlorophyll fluorescence imaging system capable of collecting data on field trials for genetic studies of a photosynthetic trait (Fv/Fm). A description of the fluorescence imaging system is provided in addition to methods for measurements across experimental field plots and a test to determine the impact of variable plant heights. The overall focus is on aspects of field applications of a chlorophyll fluorescence imaging system that differ from analogous systems in controlled environments.


Assuntos
Clorofila , Procedimentos Cirúrgicos Robóticos , Fluorescência , Imagem Óptica , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Plantas/genética , Plantas/metabolismo
5.
Front Artif Intell ; 5: 872858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860344

RESUMO

We explore the use of deep convolutional neural networks (CNNs) trained on overhead imagery of biomass sorghum to ascertain the relationship between single nucleotide polymorphisms (SNPs), or groups of related SNPs, and the phenotypes they control. We consider both CNNs trained explicitly on the classification task of predicting whether an image shows a plant with a reference or alternate version of various SNPs as well as CNNs trained to create data-driven features based on learning features so that images from the same plot are more similar than images from different plots, and then using the features this network learns for genetic marker classification. We characterize how efficient both approaches are at predicting the presence or absence of a genetic markers, and visualize what parts of the images are most important for those predictions. We find that the data-driven approaches give somewhat higher prediction performance, but have visualizations that are harder to interpret; and we give suggestions of potential future machine learning research and discuss the possibilities of using this approach to uncover unknown genotype × phenotype relationships.

6.
Genes (Basel) ; 13(2)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35205338

RESUMO

Osmotic adjustment (OA) is a major component of drought resistance in crops. The genetic basis of OA in wheat and other crops remains largely unknown. In this study, 248 field-grown durum wheat elite accessions grown under well-watered conditions, underwent a progressively severe drought treatment started at heading. Leaf samples were collected at heading and 17 days later. The following traits were considered: flowering time (FT), leaf relative water content (RWC), osmotic potential (ψs), OA, chlorophyll content (SPAD), and leaf rolling (LR). The high variability (3.89-fold) in OA among drought-stressed accessions resulted in high repeatability of the trait (h2 = 72.3%). Notably, a high positive correlation (r = 0.78) between OA and RWC was found under severe drought conditions. A genome-wide association study (GWAS) revealed 15 significant QTLs (Quantitative Trait Loci) for OA (global R2 = 63.6%), as well as eight major QTL hotspots/clusters on chromosome arms 1BL, 2BL, 4AL, 5AL, 6AL, 6BL, and 7BS, where a higher OA capacity was positively associated with RWC and/or SPAD, and negatively with LR, indicating a beneficial effect of OA on the water status of the plant. The comparative analysis with the results of 15 previous field trials conducted under varying water regimes showed concurrent effects of five OA QTL cluster hotspots on normalized difference vegetation index (NDVI), thousand-kernel weight (TKW), and/or grain yield (GY). Gene content analysis of the cluster regions revealed the presence of several candidate genes, including bidirectional sugar transporter SWEET, rhomboid-like protein, and S-adenosyl-L-methionine-dependent methyltransferases superfamily protein, as well as DREB1. Our results support OA as a valuable proxy for marker-assisted selection (MAS) aimed at enhancing drought resistance in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Secas , Locos de Características Quantitativas , Triticum/genética , Água
7.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33950177

RESUMO

Genomic structural mutations, especially deletions, are an important source of variation in many species and can play key roles in phenotypic diversification and evolution. Previous work in many plant species has identified multiple instances of structural variations (SVs) occurring in or near genes related to stress response and disease resistance, suggesting a possible role for SVs in local adaptation. Sorghum [Sorghum bicolor (L.) Moench] is one of the most widely grown cereal crops in the world. It has been adapted to an array of different climates as well as bred for multiple purposes, resulting in a striking phenotypic diversity. In this study, we identified genome-wide SVs in the Biomass Association Panel, a collection of 347 diverse sorghum genotypes collected from multiple countries and continents. Using Illumina-based, short-read whole-genome resequencing data from every genotype, we found a total of 24,648 SVs, including 22,359 deletions. The global site frequency spectrum of deletions and other types of SVs fit a model of neutral evolution, suggesting that the majority of these mutations were not under any types of selection. Clustering results based on single nucleotide polymorphisms separated the genotypes into eight clusters which largely corresponded with geographic origins, with many of the large deletions we uncovered being unique to a single cluster. Even though most deletions appeared to be neutral, a handful of cluster-specific deletions were found in genes related to biotic and abiotic stress responses, supporting the possibility that at least some of these deletions contribute to local adaptation in sorghum.


Assuntos
Sorghum , Sorghum/genética , Melhoramento Vegetal , Genótipo , Genômica/métodos , Genoma de Planta
8.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33681979

RESUMO

Sorghum bicolor, a photosynthetically efficient C4 grass, represents an important source of grain, forage, fermentable sugars, and cellulosic fibers that can be utilized in myriad applications ranging from bioenergy to bioindustrial feedstocks. Sorghum's efficient fixation of carbon per unit time per unit area per unit input has led to its classification as a preferred biomass crop highlighted by its designation as an advanced biofuel by the U.S. Department of Energy. Due to its extensive genetic diversity and worldwide colonization, sorghum has considerable diversity for a range of phenotypes influencing productivity, composition, and sink/source dynamics. To dissect the genetic basis of these key traits, we present a sorghum carbon-partitioning nested association mapping (NAM) population generated by crossing 11 diverse founder lines with Grassl as the single recurrent female. By exploiting existing variation among cellulosic, forage, sweet, and grain sorghum carbon partitioning regimes, the sorghum carbon-partitioning NAM population will allow the identification of important biomass-associated traits, elucidate the genetic architecture underlying carbon partitioning and improve our understanding of the genetic determinants affecting unique phenotypes within Poaceae. We contrast this NAM population with an existing grain population generated using Tx430 as the recurrent female. Genotypic data are assessed for quality by examining variant density, nucleotide diversity, linkage decay, and are validated using pericarp and testa phenotypes to map known genes affecting these phenotypes. We release the 11-family NAM population along with corresponding genomic data for use in genetic, genomic, and agronomic studies with a focus on carbon-partitioning regimes.


Assuntos
Sorghum , Carbono , Ligação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Sorghum/genética
9.
PLoS Pathog ; 17(1): e1009175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428681

RESUMO

The zig-zag model of host-pathogen interaction describes the relative strength of defense response across a spectrum of pathogen-induced plant phenotypes. A stronger defense response results in increased resistance. Here, we investigate the strength of pathogen virulence during disease and place these findings in the context of the zig-zag model. Xanthomonas vasicola pv. holcicola (Xvh) causes sorghum bacterial leaf streak. Despite being widespread, this disease has not been described in detail at the molecular level. We divided diverse sorghum genotypes into three groups based on disease symptoms: water-soaked lesions, red lesions, and resistance. Bacterial growth assays confirmed that these three phenotypes represent a range of resistance and susceptibility. To simultaneously reveal defense and virulence responses across the spectrum of disease phenotypes, we performed dual RNA-seq on Xvh-infected sorghum. Consistent with the zig-zag model, the expression of plant defense-related genes was strongest in the resistance interaction. Surprisingly, bacterial virulence genes related to the type III secretion system (T3SS) and type III effectors (T3Es) were also most highly expressed in the resistance interaction. This expression pattern was observed at multiple time points within the sorghum-Xvh pathosystem. Further, a similar expression pattern was observed in Arabidopsis infected with Pseudomonas syringae for effector-triggered immunity via AvrRps4 but not AvrRpt2. Specific metabolites were able to repress the Xvh virulence response in vitro and in planta suggesting a possible signaling mechanism. Taken together, these findings reveal multiple permutations of the continually evolving host-pathogen arms race from the perspective of host defense and pathogen virulence responses.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/microbiologia , Sorghum/microbiologia , Virulência , Xanthomonas/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Sorghum/genética , Sorghum/imunologia , Transcriptoma , Xanthomonas/genética , Xanthomonas/imunologia
10.
Nat Plants ; 7(1): 17-24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33452486

RESUMO

Sorghum and maize share a close evolutionary history that can be explored through comparative genomics1,2. To perform a large-scale comparison of the genomic variation between these two species, we analysed ~13 million variants identified from whole-genome resequencing of 499 sorghum lines together with 25 million variants previously identified in 1,218 maize lines. Deleterious mutations in both species were prevalent in pericentromeric regions, enriched in non-syntenic genes and present at low allele frequencies. A comparison of deleterious burden between sorghum and maize revealed that sorghum, in contrast to maize, departed from the domestication-cost hypothesis that predicts a higher deleterious burden among domesticates compared with wild lines. Additionally, sorghum and maize population genetic summary statistics were used to predict a gene deleterious index with an accuracy greater than 0.5. This research represents a key step towards understanding the evolutionary dynamics of deleterious variants in sorghum and provides a comparative genomics framework to start prioritizing these variants for removal through genome editing and breeding.


Assuntos
Evolução Molecular , Mutação/genética , Sorghum/genética , Zea mays/genética , Alelos , Carga Genética , Genômica , Desequilíbrio de Ligação/genética , Análise de Sequência de DNA
11.
Plant Physiol ; 176(3): 2515-2531, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29438088

RESUMO

Salicylic acid (SA) is a major defense signal in plants. In Arabidopsis (Arabidopsis thaliana), the chloroplast-localized isochorismate pathway is the main source of SA biosynthesis during abiotic stress or pathogen infections. In the first step of the pathway, the enzyme ISOCHORISMATE SYNTHASE1 (ICS1) converts chorismate to isochorismate. An unknown enzyme subsequently converts isochorismate to SA. Here, we show that ICS1 protein levels increase during UV-C stress. To identify proteins that may play roles in SA production by regulating ICS1, we analyzed proteins that coimmunoprecipitated with ICS1 via mass spectrometry. The ICS1 complexes contained a large number of peptides from the PROHIBITIN (PHB) protein family, with PHB3 the most abundant. PHB proteins have diverse biological functions that include acting as scaffolds for protein complex formation and stabilization. PHB3 was reported previously to localize to mitochondria. Using fractionation, protease protection, and live imaging, we show that PHB3 also localizes to chloroplasts, where ICS1 resides. Notably, loss of PHB3 function led to decreased ICS1 protein levels in response to UV-C stress. However, ICS1 transcript levels remain unchanged, indicating that ICS1 is regulated posttranscriptionally. The phb3 mutant displayed reduced levels of SA, the SA-regulated protein PR1, and hypersensitive cell death in response to UV-C and avirulent strains of Pseudomonas syringae and, correspondingly, supported increased growth of P. syringae The expression of a PHB3 transgene in the phb3 mutant complemented all of these phenotypes. We suggest a model in which the formation of PHB3-ICS1 complexes stabilizes ICS1 to promote SA production in response to stress.


Assuntos
Arabidopsis/metabolismo , Transferases Intramoleculares/metabolismo , Proteínas Repressoras/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Mitocôndrias/metabolismo , Mutação , Plantas Geneticamente Modificadas , Proibitinas , Pseudomonas syringae/patogenicidade , Proteínas Repressoras/genética , Estresse Fisiológico , Raios Ultravioleta
12.
Curr Opin Plant Biol ; 38: 184-192, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28738313

RESUMO

Effective implementation of technology that facilitates accurate and high-throughput screening of thousands of field-grown lines is critical for accelerating crop improvement and breeding strategies for higher yield and disease tolerance. Progress in the development of field-based high throughput phenotyping methods has advanced considerably in the last 10 years through technological progress in sensor development and high-performance computing. Here, we review recent advances in high throughput field phenotyping technologies designed to inform the genetics of quantitative traits, including crop yield and disease tolerance. Successful application of phenotyping platforms to advance crop breeding and identify and monitor disease requires: (1) high resolution of imaging and environmental sensors; (2) quality data products that facilitate computer vision, machine learning and GIS; (3) capacity infrastructure for data management and analysis; and (4) automated environmental data collection. Accelerated breeding for agriculturally relevant crop traits is key to the development of improved varieties and is critically dependent on high-resolution, high-throughput field-scale phenotyping technologies that can efficiently discriminate better performing lines within a larger population and across multiple environments.


Assuntos
Cruzamento , Produtos Agrícolas/fisiologia , Aprendizado de Máquina
13.
Curr Protoc Plant Biol ; 2(1): 1-21, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31725975

RESUMO

Phenotypic measurements and images of crops grown under controlled-environment conditions can be analyzed to compare plant growth and other phenotypes from diverse varieties. Those demonstrating the most favorable phenotypic traits can then be used for crop improvement strategies. This article details a protocol for image-based root and shoot phenotyping of plants grown in the greenhouse to compare traits among different varieties. Diverse maize lines were grown in the greenhouse in large 8-gallon treepots in a clay granule substrate. Replicates of each line were harvested at 4 weeks, 6 weeks, and 8 weeks after planting to capture developmental information. Whole-plant phenotypes include biomass accumulation, ontogeny, architecture, and photosynthetic efficiency of leaves. Image analysis was used to measure leaf surface area and tassel size and to extract shape variance information from complex 3D root architectures. Notably, this framework is extensible to any number of above- or below-ground phenotypes, both morphological and physiological. © 2017 by John Wiley & Sons, Inc.

14.
Genetics ; 204(1): 21-33, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27356613

RESUMO

With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production.


Assuntos
Biocombustíveis , Sorghum/genética , Agricultura/métodos , Andropogon/genética , Andropogon/metabolismo , Carboidratos/genética , Mapeamento Cromossômico , Grão Comestível/genética , Marcadores Genéticos/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Modelos Genéticos , Melhoramento Vegetal , Poaceae/genética , Sorghum/metabolismo
15.
Plant Physiol ; 170(4): 1989-98, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26896393

RESUMO

Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement.


Assuntos
Meio Ambiente , Variação Genética , Sementes/genética , Sorghum/genética , Estudo de Associação Genômica Ampla , Padrões de Herança/genética , Modelos Biológicos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
16.
BMC Plant Biol ; 14: 35, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24456189

RESUMO

BACKGROUND: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. RESULTS: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. CONCLUSIONS: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.


Assuntos
Sorghum/genética , Sorghum/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA