Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 120(7): 1139-1149, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33582138

RESUMO

Phase separation of biological molecules, such as nucleic acids and proteins, has garnered widespread attention across many fields in recent years. For instance, liquid-liquid phase separation has been implicated not only in membraneless intracellular organization but also in many biochemical processes, including transcription, translation, and cellular signaling. Here, we present a historical background of biological phase separation and survey current work on nuclear organization and its connection to DNA phase separation from the perspective of DNA sequence, structure, and genomic context.


Assuntos
DNA , Proteínas , Sequência de Bases , DNA/genética
2.
Biophys J ; 118(3): 753-764, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952807

RESUMO

Liquid-liquid phase separation (LLPS) of proteins and nucleic acids has emerged as an important phenomenon in membraneless intracellular organization. We demonstrate that the linker histone H1 condenses into liquid-like droplets in the nuclei of HeLa cells. The droplets, observed during the interphase of the cell cycle, are colocalized with DNA-dense regions indicative of heterochromatin. In vitro, H1 readily undergoes LLPS with both DNA and nucleosomes of varying lengths but does not phase separate in the absence of DNA. The nucleosome core particle maintains its structural integrity inside the droplets, as demonstrated by FRET. Unexpectedly, H2A also forms droplets in the presence of DNA and nucleosomes in vitro, whereas the other core histones precipitate. The phase diagram of H1 with nucleosomes is invariant to the nucleosome length at physiological salt concentration, indicating that H1 is capable of partitioning large segments of DNA into liquid-like droplets. Of the proteins tested (H1, core histones, and the heterochromatin protein HP1α), this property is unique to H1. In addition, free nucleotides promote droplet formation of H1 nucleosome in a nucleotide-dependent manner, with droplet formation being most favorable with ATP. Although LLPS of HP1α is known to contribute to the organization of heterochromatin, our results indicate that H1 also plays a role. Based on our study, we propose that H1 and DNA act as scaffolds for phase-separated heterochromatin domains.


Assuntos
Cromatina , Histonas , Homólogo 5 da Proteína Cromobox , Células HeLa , Heterocromatina , Histonas/genética , Humanos , Nucleossomos
3.
Proc Natl Acad Sci U S A ; 116(33): 16256-16261, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31366630

RESUMO

Complex liquids flow through channels faster than expected, an effect attributed to the formation of low-viscosity depletion layers at the boundaries. Characterization of depletion layer length scale, concentration, and dynamics has remained elusive due in large part to the lack of suitable real-space experimental techniques. The short length scales associated with depletion layers have traditionally prohibited direct imaging. By overcoming this limitation via adaptations of stimulated emission depletion (STED) microscopy, we directly measure the concentration profile of polymer solutions at a nonadsorbing wall under Poiseuille flow. Using this approach, we 1) confirm the theoretically predicted concentration profile governed by entropically driven depletion, 2) observe depletion layer narrowing at low to intermediate shear rates, and 3) report depletion layer composition that approaches pure solvent at unexpectedly low shear rates.

4.
Biophys J ; 115(10): 1840-1847, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342746

RESUMO

Phase separation of intracellular components has been recently realized as a mechanism by which cells achieve membraneless organization. Here, we study the associative liquid-liquid phase separation (LLPS) of DNA upon complexation with cationic polypeptides. Comparing the phase behavior of different single-stranded DNA as well as double-stranded DNA (dsDNA) sequences that differ in persistence lengths, we find that DNA local flexibility, not simply charge density, determines the LLPS. Furthermore, in a nucleotide- and DNA-dependent manner, free nucleotide triphosphates promote LLPS of polypeptide-dsDNA complexes that are otherwise prone to precipitation. Under these conditions, dsDNA undergoes a secondary phase separation forming liquid-crystalline subcompartments inside the droplets. These results point toward a role of local DNA flexibility, encoded in the sequence, in the regulation and selectivity of multicomponent LLPS in membraneless intracellular organization.


Assuntos
DNA/química , Sequência de Bases , DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Hidrodinâmica , Cristais Líquidos/química , Modelos Moleculares , Conformação de Ácido Nucleico
5.
Nature ; 554(7691): 195-201, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420478

RESUMO

Tautomeric and anionic Watson-Crick-like mismatches have important roles in replication and translation errors through mechanisms that are not fully understood. Here, using NMR relaxation dispersion, we resolve a sequence-dependent kinetic network connecting G•T/U wobbles with three distinct Watson-Crick mismatches: two rapidly exchanging tautomeric species (Genol•T/UG•Tenol/Uenol; population less than 0.4%) and one anionic species (G•T-/U-; population around 0.001% at neutral pH). The sequence-dependent tautomerization or ionization step was inserted into a minimal kinetic mechanism for correct incorporation during replication after the initial binding of the nucleotide, leading to accurate predictions of the probability of dG•dT misincorporation across different polymerases and pH conditions and for a chemically modified nucleotide, and providing mechanisms for sequence-dependent misincorporation. Our results indicate that the energetic penalty for tautomerization and/or ionization accounts for an approximately 10-2 to 10-3-fold discrimination against misincorporation, which proceeds primarily via tautomeric dGenol•dT and dG•dTenol, with contributions from anionic dG•dT- dominant at pH 8.4 and above or for some mutagenic nucleotides.


Assuntos
Pareamento Incorreto de Bases , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , DNA/química , Guanina/metabolismo , Mutagênese , Timina/metabolismo , Animais , Ânions , Pareamento Incorreto de Bases/genética , DNA/genética , Guanina/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Probabilidade , Ratos , Timina/química
6.
ACS Macro Lett ; 7(10): 1220-1225, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35651258

RESUMO

Bulk-level measurements of dynamics have suggested that phase-separated, protein-nucleic acid rich droplets can be viewed as simple liquids. In this report, we show that histone proteins spontaneously phase separate into liquid-like droplets in the presence of DNA. Using super-resolution fluorescence microscopy, we find that molecular transport in these droplets is non-Fickian (subdiffusive) at nanoscopic length scales. This observation cannot be explained by charge-charge interactions. Instead, our results strongly suggest that cation-π interactions drive the non-Fickian behavior. Given the ubiquity of cationic and aromatic moieties in protein-nucleic acid rich liquid-like phases observed in cells, we anticipate that non-Fickian diffusion is a general transport mechanism in such phases.

7.
Biochemistry ; 55(32): 4445-56, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27232530

RESUMO

Helix-junction-helix (HJH) motifs are flexible building blocks of RNA architecture that help define the orientation and dynamics of helical domains. They are also frequently involved in adaptive recognition of proteins and small molecules and in the formation of tertiary contacts. Here, we use a battery of nuclear magnetic resonance techniques to examine how deleting a single bulge residue (C24) from the human immunodeficiency virus type 1 (HIV-1) transactivation response element (TAR) trinucleotide bulge (U23-C24-U25) affects dynamics over a broad range of time scales. Shortening the bulge has an effect on picosecond-to-nanosecond interhelical and local bulge dynamics similar to that casued by increasing the Mg(2+) and Na(+) concentration, whereby a preexisting two-state equilibrium in TAR is shifted away from a bent flexible conformation toward a coaxial conformation, in which all three bulge residues are flipped out and flexible. Surprisingly, the point deletion minimally affects microsecond-to-millisecond conformational exchange directed toward two low-populated and short-lived excited conformational states that form through reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond time scale, in which U23 is intrahelical, mimicking the expected conformation of residue C24 in the excited conformational state of wild-type TAR. Thus, minor changes in HJH topology preserve motional modes in RNA occurring over the picosecond-to-millisecond time scales but alter the relative populations of the sampled states or cause subtle changes in their conformational features.


Assuntos
Repetição Terminal Longa de HIV/genética , HIV-1/genética , Movimento , Conformação de Ácido Nucleico , Nucleotídeos , RNA Viral/química , RNA Viral/metabolismo , Sequência de Bases , Cinética , Modelos Moleculares , Mutação , RNA Viral/genética , Termodinâmica
8.
Biomacromolecules ; 17(1): 154-64, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26595195

RESUMO

A combination of solution NMR, dynamic light scattering (DLS), and fluorescence quenching assays were employed to obtain insights into the dynamics and structural features of a polyplex system consisting of HIV-1 transactivation response element (TAR) and PEGylated generation 5 poly(amidoamine) dendrimer (G5-PEG). NMR chemical shift mapping and (13)C spin relaxation based dynamics measurements depict the polyplex system as a highly dynamic assembly where the RNA, with its local structure and dynamics preserved, rapidly exchanges (

Assuntos
Dendrímeros/química , RNA/química , HIV-1/química , Espectroscopia de Ressonância Magnética/métodos , Poliaminas/química , Polietilenoglicóis/química , Elementos de Resposta/genética , Transfecção/métodos
9.
ACS Macro Lett ; 5(10): 1104-1108, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35658189

RESUMO

Prototropic and solvatochromatic properties of fluorescein (FL) were employed to detect the presence of microenvironments in polyplexes consisting of polycationic polymer (POCP) and a fluorescein-conjugated RNA, the HIV-1 transactivation response element (TAR-FL). Results reveal new aspects of polyplex structure with respect to polyplex-bound RNA existing in the following local microenvironments: (a) RNA associated with the polyplex that experiences local pH changes in a manner dependent on POCP nitrogen to RNA phosphate ratio (N:P), (b) RNA experiencing relatively acidic local pH environment that remains constant in polyplexes formed after a charge-neutral ratio, and (c) RNA packed close enough to mediate fluorophore/fluorophore quenching. The magnitude of these changes observed as a function of POCP to nucleic acid N:P ratio is polymer dependent. Assessment of the different microenvironments can help elucidate the functional hierarchy of polyplex-bound oligonucleotides and additionally characterize POCPs based on the resulting local pH and solvent properties upon polyplex formation.

10.
Mol Pharm ; 10(8): 3013-22, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23834286

RESUMO

Cytosolic nucleases have been proposed to play an important role in limiting the effectiveness of polyplex-based gene delivery agents. In order to explore the effect of cell membrane disruption on nuclease activation, nuclease activity upon polyplex uptake and localization, and nuclease activity upon gene expression, we employed an oligonucleotide molecular beacon (MB). The MB was incorporated as an integral part of the polymer/DNA polyplex, and two-color flow cytometry experiments were performed to explore the relationship of MB cleavage with propidium iodide (PI) uptake, protein expression, and polyplex uptake. In addition, confocal fluorescence microcopy was performed to examine both polyplex and cleaved MB localization. The impact of cell membrane disruption was also probed using whole-cell patch clamp measurement of the plasma membrane's electrical conductance. Differential activation of cytosolic nuclease was observed with substantial activity for B-PEI and G5 PAMAM dendrimer (G5), less cleavage for jetPEI, and little activity for L-PEI. jetPEI and L-PEI exhibited substantially greater transgene expression, consistent with the lower amounts of MB oligonucleotide cleavage observed. Cytosolic nuclease activity, although dependent on the choice of polymer employed, was not related to the degree of cell plasma membrane disruption that occurred as measured by PI uptake or whole-cell patch clamp.


Assuntos
Desoxirribonucleases/metabolismo , Transgenes/genética , Dendrímeros/química , Citometria de Fluxo , Células HeLa , Humanos , Microscopia Confocal , Técnicas de Patch-Clamp , Porosidade , Propídio/metabolismo , Transfecção
11.
J Am Chem Soc ; 135(25): 9275-8, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23745827

RESUMO

The sensitization of p-GaP by adsorbed CdSe quantum dots has been observed. Nondegenerately doped, planar p-GaP(100) photoelectrodes consistently showed sub-band-gap (>550 nm) photoresponsivity in an aqueous electrolyte containing Eu(3+/2+) when CdSe quantum dots (diameters ranging from 3.1 to 4.5 nm) were purposely adsorbed on the surface. Both time-resolved photoluminescence decays and steady-state photoelectrochemical responses supported sensitized hole injection from the CdSe quantum dots into p-GaP. The observation of hole injection in this system stands in contrast to sensitized electron injection seen in other metal oxide/quantum dot material combinations and therefore widens the possible designs for photoelectrochemical energy conversion systems that utilize quantum dots as light-harvesting components.


Assuntos
Compostos de Cádmio/química , Gálio/química , Luz , Fósforo/química , Pontos Quânticos , Compostos de Selênio/química , Adsorção , Eletrodos , Porosidade , Propriedades de Superfície
12.
J Chem Phys ; 133(12): 124308, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20886933

RESUMO

The equilibrium structure, stability, and electronic properties of the Al(13)X (X=H,Au,Li,Na,K,Rb,Cs) clusters have been studied using a combination of photoelectron spectroscopy experiment and density functional theory. All these clusters constitute 40 electron systems with 39 electrons contributed by the 13 Al atoms and 1 electron contributed by each of the X (X=H,Au,Li,Na,K,Rb,Cs) atom. A systematic study allows us to investigate whether all electrons contributed by the X atoms are alike and whether the structure, stability, and properties of all the magic clusters are similar. Furthermore, quantitative agreement between the calculated and the measured electron affinities and vertical detachment energies enable us to identify the ground state geometries of these clusters both in neutral and anionic configurations.

13.
J Am Soc Mass Spectrom ; 21(6): 1050-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20207164

RESUMO

The study of isolated protein complexes has greatly benefited from recent advances in mass spectrometry instrumentation and quantitative, isotope labeling techniques. The comprehensive characterization of protein complex components and quantification of their relative abundance relies heavily upon maximizing protein and peptide sequence information obtained from MS and tandem MS studies. Recent work has shown that using a metalloendopeptidase, Lys-N, for proteomic analysis of biological protein mixtures produces complementary protein sequence information compared with trypsin digestion alone. Here, we have investigated the suitability of Lys-N proteolysis for use with MALDI mass spectrometry to characterize the yeast Arp2 complex and E. coli PAP I protein interactions. Although Lys-N digestion resulted in an average decrease in protein sequence coverage of approximately 30% compared with trypsin digestion, CID analysis of singly-charged Lys-N peptides yielded a more extensive b-ions series compared with complementary tryptic peptides. Taking advantage of this improved fragmentation pattern, we utilized differential (15)N/(14)N guanidination of Lys-N peptides and MALDI-MS/MS analysis to relatively quantify the changes in PAP I associations due to deletion of sprE, previously shown to regulate PAP I-dependent polyadenylation. Overall, this Lys-N/guanidination integrative approach is applicable for functional proteomic studies utilizing MALDI mass spectrometry analysis, as it provides an effective and economical mean for relative quantification of proteins in conjunction with increased sensitivity of detection and fragmentation efficiency.


Assuntos
Guanidina/química , Lisina/química , Metaloendopeptidases/química , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos/métodos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteína 2 Relacionada a Actina/química , Proteína 2 Relacionada a Actina/metabolismo , Sequência de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Guanidina/metabolismo , Lisina/metabolismo , Metaloendopeptidases/metabolismo , Compostos de Metilureia , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Fragmentos de Peptídeos/química , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA