Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 161(1): e1-e15, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31679703

RESUMO

OBJECTIVES: Aortic valve stenosis (AVS) is the most common cause of surgical valve replacement worldwide. The vasoactive peptide urotensin II (UII) is upregulated in atherosclerosis and several other cardiovascular diseases; however, its role in the pathogenesis of AVS remains to be determined. Here, we investigated the expression of UII, urotensin-related peptide (URP), and the urotensin receptor (UT) and the role this system plays in AVS. METHODS: Immunohistochemistry and reverse-transcriptase polymerase chain reaction were used to examine the cellular localization and mRNA expression, of UII, URP, and UT in calcified and noncalcified aortic valves. Human aortic valve interstitial cells were isolated from normal valves and treated with UII or URP, and changes in cell proliferation, cholesterol efflux, calcium deposition, and ß-catenin translocation were assessed. RESULTS: The mRNA expression of UII, URP, and UT was significantly greater in patients with AVS. There was abundant presence of UII, URP, and UT immunostaining in diseased compared with nondiseased valves and correlated significantly with presence of calcification (P < .0001) and fibrosis (P < .0001). Treating human aortic valve interstitial cells with UII or URP significantly increased cell proliferation (P < .0001) and decreased cholesterol efflux (P = .0011 and P = .0002, respectively). UII also significantly reduced ABCA1 protein expression (P = .0457) and increased ß-catenin nuclear translocation (P < .0001) and mineral deposition (P < .0001). CONCLUSIONS: Together, these data suggest that the urotensin system plays a role in the pathogenesis of AVS and warrants further investigation.

2.
Front Cell Dev Biol ; 8: 862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015048

RESUMO

Aortic valve stenosis (AVS) is a prevailing and life-threatening cardiovascular disease in adults over 75 years of age. However, the molecular mechanisms governing the pathogenesis of AVS are yet to be fully unraveled. With accumulating evidence that Wnt signaling plays a key role in the development of AVS, the involvement of Wnt molecules has become an integral study target in AVS pathogenesis. Thus, we hypothesized that the Wnt/ß-catenin pathway mediators, SFRP2, DVL2, GSK3ß and ß-catenin are dysregulated in patients with AVS. Using immunohistochemistry, Real-Time qPCR and Western blotting, we investigated the presence of SFRP2, GSK-3ß, DVL2, and ß-catenin in normal and stenotic human aortic valves. Markedly higher mRNA and protein expression of GSK-3ß, DVL2, ß-catenin and SFRP2 were found in stenotic aortic valves. This was further corroborated by observation of their abundant immunostaining, which displayed strong immunoreactivity in diseased aortic valves. Proteomic analyses of selective GSK3b inhibition in calcifying human aortic valve interstitial cells (HAVICs) revealed enrichment of proteins involved organophosphate metabolism, while reducing the activation of pathogenic biomolecular processes. Lastly, use of the potent calcification inhibitor, Fetuin A, in calcifying HAVICs significantly reduced the expression of Wnt signaling genes Wnt3a, Wnt5a, Wnt5b, and Wnt11. The current findings of altered expression of canonical Wnt signaling in AVS suggest a possible role for regulatory Wnts in AVS. Hence, future studies focused on targeting these molecules are warranted to underline their role in the pathogenesis of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA