Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Adv ; 9(43): eadg5391, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889967

RESUMO

Hematopoietic stem cells (HSCs) are tightly controlled to maintain a balance between blood cell production and self-renewal. While inflammation-related signaling is a critical regulator of HSC activity, the underlying mechanisms and the precise functions of specific factors under steady-state and stress conditions remain incompletely understood. We investigated the role of interferon regulatory factor 1 (IRF1), a transcription factor that is affected by multiple inflammatory stimuli, in HSC regulation. Our findings demonstrate that the loss of IRF1 from mouse HSCs significantly impairs self-renewal, increases stress-induced proliferation, and confers resistance to apoptosis. In addition, given the frequent abnormal expression of IRF1 in leukemia, we explored the potential of IRF1 expression level as a stratification marker for human acute myeloid leukemia. We show that IRF1-based stratification identifies distinct cancer-related signatures in patient subgroups. These findings establish IRF1 as a pivotal HSC controller and provide previously unknown insights into HSC regulation, with potential implications to IRF1 functions in the context of leukemia.


Assuntos
Regulação da Expressão Gênica , Leucemia Mieloide Aguda , Camundongos , Humanos , Animais , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Transdução de Sinais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Proliferação de Células
2.
Proc Natl Acad Sci U S A ; 120(19): e2300706120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126700

RESUMO

Although viral hepatocellular carcinoma (HCC) is declining, nonviral HCC, which often is the end stage of nonalcoholic or alcoholic steatohepatitis (NASH, ASH), is on an upward trajectory. Immune checkpoint inhibitors (ICIs) that block the T cell inhibitory receptor PD-1 were approved for treatment of all HCC types. However, only a minority of HCC patients show a robust and sustained response to PD-1 blockade, calling for improved understanding of factors that negatively impact response rate and duration and the discovery of new adjuvant treatments that enhance ICI responsiveness. Using a mouse model of NASH-driven HCC, we identified peritumoral fibrosis as a potential obstacle to T cell-mediated tumor regression and postulated that antifibrotic medications may increase ICI responsiveness. We now show that the angiotensin II receptor inhibitor losartan, a commonly prescribed and safe antihypertensive drug, reduced liver and peritumoral fibrosis and substantially enhanced anti-PD-1-induced tumor regression. Although losartan did not potentiate T cell reinvigoration, it substantially enhanced HCC infiltration by effector CD8+ T cells compared to PD-1 blockade alone. The beneficial effects of losartan correlated with blunted TGF-ß receptor signaling, reduced collagen deposition, and depletion of immunosuppressive fibroblasts.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Linfócitos T CD8-Positivos , Losartan , Cirrose Hepática/patologia
3.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945365

RESUMO

Although viral hepatocellular carcinoma (HCC) is declining, non-viral HCC, which often is the end-stage of non-alcoholic or alcoholic steatohepatitis (NASH, ASH), is on an upward trajectory. Immune checkpoint inhibitors (ICI) that block the T cell inhibitory receptor PD-1 were approved for treatment of all HCC types. However, only a small portion of HCC patients show a robust and sustained response to PD-1 blockade, calling for improved understanding of factors that negatively impact response rate and duration and the discovery of new adjuvant treatments that enhance ICI responsiveness. Using a mouse model of NASH-driven HCC, we identified peritumoral fibrosis as a potential obstacle to T cell mediated tumor regression and postulated that anti-fibrotic medications may increase ICI responsiveness. We now show that the angiotensin II receptor inhibitor losartan, a commonly prescribed and safe antihypertensive drug, reduced liver and peritumoral fibrosis and substantially enhanced anti-PD-1 induced tumor regression. Although losartan did not potentiate T cell reinvigoration, it substantially enhanced HCC infiltration by effector CD8 + T cells compared to PD-1 blockade alone. The beneficial effects of losartan correlated with inhibition of TGF-ß receptor signaling, collagen deposition and depletion of immunosuppressive fibroblasts. Significance: Immune checkpoint inhibitors are used in HCC treatment but overall response rates for single agent PD-1/PD-L1 blockers have remained stubbornly low. Using a mouse model of NASH-driven HCC, we show that co-treatment with the safe and inexpensive angiotensin II receptor inhibitor losartan substantially enhanced anti-PD-1 triggered HCC regression. Although losartan did not influence the reinvigoration of exhausted CD8 + T cells it considerably enhanced their intratumoral invasion, which we postulated to be compromised by peritumoral fibrosis. Indeed, the beneficial effect of losartan correlated with inhibition of TGF-ß signaling and collagen deposition, and depletion of immunosuppressive fibroblasts. Losartan should be evaluated for its adjuvant activity in HCC patients undergoing PD-1/PD-L1 blocking therapy.

4.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945457

RESUMO

Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type-I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8 + T cell activation and eradication of ptPDAC with restoration of lifespan even upon PDAC re-challenge. Such eradication of ptPDAC was reversed following specific depletion of dendritic cells. Employing PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with a curative outcome. Analysis of the T-cell receptor (TCR) sequences in the tumor infiltrating CD8 + T cells following cDC1 vaccination coupled with iCBT identified unique CDR3 sequences with potential therapeutic significance. Our findings identify a fundamental difference in the immune microenvironment and adaptive immune response in PDAC concurrent with, or without pancreatitis, and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.

5.
bioRxiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747722

RESUMO

Inflammatory mediators induce emergency myelopoiesis and cycling of adult hematopoietic stem cells (HSCs) through incompletely understood mechanisms. To suppress the unwanted effects of inflammation and preserve its beneficial outcomes, the mechanisms by which inflammation affects hematopoiesis need to be fully elucidated. Rather than focusing on specific inflammatory stimuli, we here investigated the role of transcription factor Interferon (IFN) regulatory factor 1 (IRF1), which receives input from several inflammatory signaling pathways. We identify IRF1 as a master HSC regulator. IRF1 loss impairs HSC self-renewal, increases stress-induced cell cycle activation, and confers apoptosis resistance. Transcriptomic analysis revealed an aged, inflammatory signature devoid of IFN signaling with reduced megakaryocytic/erythroid priming and antigen presentation in IRF1-deficient HSCs. Finally, we conducted IRF1-based AML patient stratification to identify groups with distinct proliferative, survival and differentiation features, overlapping with our murine HSC results. Our findings position IRF1 as a pivotal regulator of HSC preservation and stress-induced responses.

6.
Cancer Discov ; 12(11): 2626-2645, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098652

RESUMO

Tumor-infiltrating B and plasma cells (TIB) are prevalent in lung adenocarcinoma (LUAD); however, they are poorly characterized. We performed paired single-cell RNA and B-cell receptor (BCR) sequencing of 16 early-stage LUADs and 47 matching multiregion normal tissues. By integrative analysis of ∼50,000 TIBs, we define 12 TIB subsets in the LUAD and adjacent normal ecosystems and demonstrate extensive remodeling of TIBs in LUADs. Memory B cells and plasma cells (PC) were highly enriched in tumor tissues with more differentiated states and increased frequencies of somatic hypermutation. Smokers exhibited markedly elevated PCs and PCs with distinct differentiation trajectories. BCR clonotype diversity increased but clonality decreased in LUADs, smokers, and with increasing pathologic stage. TIBs were mostly localized within CXCL13+ lymphoid aggregates, and immune cell sources of CXCL13 production evolved with LUAD progression and included elevated fractions of CD4 regulatory T cells. This study provides a spatial landscape of TIBs in early-stage LUAD. SIGNIFICANCE: While TIBs are highly enriched in LUADs, they are poorly characterized. This study provides a much-needed understanding of the transcriptional, clonotypic states and phenotypes of TIBs, unraveling their potential roles in the immunopathology of early-stage LUADs and constituting a road map for the development of TIB-targeted immunotherapies for the treatment of this morbid malignancy. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Plasmócitos/patologia , Ecossistema , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma/genética , Prognóstico
7.
Cell Death Discov ; 8(1): 94, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241649

RESUMO

The BAG3- and SIRPα- mediated pathways trigger distinct cellular targets and signaling mechanisms in pancreatic cancer microenvironment. To explore their functional connection, we investigated the effects of their combined blockade on cancer growth in orthotopic allografts of pancreatic cancer mt4-2D cells in immunocompetent mice. The anti-BAG3 + anti-SIRPα mAbs treatment inhibited (p = 0.007) tumor growth by about the 70%; also the number of metastatic lesions was decreased, mostly by the effect of the anti-BAG3 mAb. Fibrosis and the expression of the CAF activation marker α-SMA were reduced by about the 30% in animals treated with anti-BAG3 mAb compared to untreated animals, and appeared unaffected by treatment with the anti-SIRPα mAb alone; however, the addition of anti-SIRPα to anti-BAG3 mAb in the combined treatment resulted in a > 60% (p < 0.0001) reduction of the fibrotic area and a 70% (p < 0.0001) inhibition of CAF α-SMA positivity. Dendritic cells (DCs) and CD8+ lymphocytes, hardly detectable in the tumors of untreated animals, were modestly increased by single treatments, while were much more clearly observable (p < 0.0001) in the tumors of the animals subjected to the combined treatment. The effects of BAG3 and SIRPα blockade do not simply reflect the sum of the effects of the single blockades, indicating that the two pathways are connected by regulatory interactions and suggesting, as a proof of principle, the potential therapeutic efficacy of a combined BAG3 and SIRPα blockade in pancreatic cancer.

8.
Cell Mol Immunol ; 19(1): 59-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465885

RESUMO

Chronic inflammation promotes tumor development, progression, and metastatic dissemination and causes treatment resistance. The accumulation of genetic alterations and loss of normal cellular regulatory processes are not only associated with cancer growth and progression but also result in the expression of tumor-specific and tumor-associated antigens that may activate antitumor immunity. This antagonism between inflammation and immunity and the ability of cancer cells to avoid immune detection affect the course of cancer development and treatment outcomes. While inflammation, particularly acute inflammation, supports T-cell priming, activation, and infiltration into infected tissues, chronic inflammation is mostly immunosuppressive. However, the main mechanisms that dictate the outcome of the inflammation-immunity interplay are not well understood. Recent data suggest that inflammation triggers epigenetic alterations in cancer cells and components of the tumor microenvironment. These alterations can affect and modulate numerous aspects of cancer development, including tumor growth, the metabolic state, metastatic spread, immune escape, and immunosuppressive or immunosupportive leukocyte generation. In this review, we discuss the role of inflammation in initiating epigenetic alterations in immune cells, cancer-associated fibroblasts, and cancer cells and suggest how and when epigenetic interventions can be combined with immunotherapies to improve therapeutic outcomes.


Assuntos
Inflamação , Neoplasias , Epigênese Genética , Humanos , Imunoterapia , Inflamação/genética , Inflamação/metabolismo , Neoplasias/terapia , Microambiente Tumoral
9.
Semin Immunol ; 52: 101479, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215491

RESUMO

The opposing roles of innate and adaptive immune cells in suppressing or supporting cancer initiation, progression, metastasis and response to therapy has been long debated. The mechanisms by which different monocyte and T cell subtypes affect and modulate cancer have been extensively studied. However, the role of B cells and their subtypes have remained elusive, perhaps partially due to their heterogeneity and range of actions. B cells can produce a variety of cytokines and present tumor-derived antigens to T cells in combination with co-stimulatory or inhibitory ligands based on their phenotype. Unlike most T cells, B cells can be activated by innate immune stimuli, such as endotoxin. Furthermore, the isotype and specificity of the antibodies produced by plasma cells regulate distinct immune responses, including opsonization, antibody-mediated cellular cytotoxicity (ADCC) and complement activation. B cells are shaped by the tumor environment (TME), with the capability to regulate the TME in return. In this review, we will describe the mechanisms of B cell action, including cytokine production, antigen presentation, ADCC, opsonization, complement activation and how they affect tumor development and response to immunotherapy. We will also discuss how B cell fate within the TME is affected by tumor stroma, microbiome and metabolism.


Assuntos
Linfócitos B , Neoplasias , Humanos , Imunoterapia , Neoplasias/terapia , Linfócitos T
10.
Genes Dev ; 35(11-12): 787-820, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34074695

RESUMO

Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Biomarcadores Tumorais/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/fisiopatologia , Neoplasias Colorretais/terapia , Humanos , Mutação/genética , Pesquisa/tendências , Microambiente Tumoral/imunologia
11.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602823

RESUMO

Many cancers evade immune rejection by suppressing major histocompatibility class I (MHC-I) antigen processing and presentation (AgPP). Such cancers do not respond to immune checkpoint inhibitor therapies (ICIT) such as PD-1/PD-L1 [PD-(L)1] blockade. Certain chemotherapeutic drugs augment tumor control by PD-(L)1 inhibitors through potentiation of T-cell priming but whether and how chemotherapy enhances MHC-I-dependent cancer cell recognition by cytotoxic T cells (CTLs) is not entirely clear. We now show that the lysine acetyl transferases p300/CREB binding protein (CBP) control MHC-I AgPPM expression and neoantigen amounts in human cancers. Moreover, we found that two distinct DNA damaging drugs, the platinoid oxaliplatin and the topoisomerase inhibitor mitoxantrone, strongly up-regulate MHC-I AgPP in a manner dependent on activation of nuclear factor kappa B (NF-κB), p300/CBP, and other transcription factors, but independently of autocrine IFNγ signaling. Accordingly, NF-κB and p300 ablations prevent chemotherapy-induced MHC-I AgPP and abrogate rejection of low MHC-I-expressing tumors by reinvigorated CD8+ CTLs. Drugs like oxaliplatin and mitoxantrone may be used to overcome resistance to PD-(L)1 inhibitors in tumors that had "epigenetically down-regulated," but had not permanently lost MHC-I AgPP activity.


Assuntos
Apresentação de Antígeno/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células , Quimioterapia Combinada , Humanos , Imunoterapia/métodos , Camundongos , NF-kappa B/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Oxaliplatina/farmacologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores de Transcrição de p300-CBP/genética
12.
Nat Metab ; 2(10): 1034-1045, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839596

RESUMO

Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes.


Assuntos
Frutose/farmacologia , Inflamação/metabolismo , Lipogênese/efeitos dos fármacos , Acetilcoenzima A/farmacologia , Animais , Endotoxemia/sangue , Feminino , Frutosefosfatos/farmacologia , Microbioma Gastrointestinal , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Intestinos/efeitos dos fármacos , Lipidômica , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regeneração/efeitos dos fármacos , Receptores Toll-Like/agonistas
13.
J Transl Med ; 18(1): 214, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466781

RESUMO

BACKGROUND: Immunotherapeutic regulation of the tumor microenvironment in prostate cancer patients is not understood. Most antibody immunotherapies have not succeeded in prostate cancer. We showed previously that high-risk PCa patients have a higher density of tumor infiltrating B-cells in prostatectomy specimens. In mouse models, anti-CD20 antibody ablation of B-cells delayed PCa regrowth post-treatment. We sought to determine whether neoadjuvant anti-CD20 immunotherapy with rituximab could reduce CD20+ B cell infiltration of prostate tumors in patients. METHODS: An open label, single arm clinical trial enrolled eight high-risk PCa patients to receive one cycle of neoadjuvant rituximab prior to prostatectomy. Eleven clinical specimens with similar characteristics were selected as controls. Treated and control samples were concurrently stained for CD20 and digitally scanned in a blinded fashion. A new method of digital image quantification of lymphocytes was applied to prostatectomy sections of treated and control cases. CD20 density was quantified by a deconvolution algorithm in pathologist-marked tumor and adjacent regions. Statistical significance was assessed by one sided Welch's t-test, at 0.05 level using a gatekeeper strategy. Secondary outcomes included CD3+ T-cell and PD-L1 densities. RESULTS: Mean CD20 density in the tumor regions of the treated group was significantly lower than the control group (p = 0.02). Mean CD3 density in the tumors was significantly decreased in the treated group (p = 0.01). CD20, CD3 and PD-L1 staining primarily occurred in tertiary lymphoid structures (TLS). Neoadjuvant rituximab was well-tolerated and decreased B-cell and T-cell density within high-risk PCa tumors compared to controls. CONCLUSIONS: This is the first study to treat patients prior to surgical prostate removal with an immunotherapy that targets B-cells. Rituximab treatment reduced tumor infiltrating B and T-cell density especially in TLSs, thus, demonstrating inter-dependence between B- and T-cells in prostate cancer and that Rituximab can modify the immune environment in prostate tumors. Future studies will determine who may benefit from using rituximab to improve their immune response against prostate cancer. Trial registration NCT01804712, March 5th, 2013 https://clinicaltrials.gov/ct2/show/NCT01804712?cond=NCT01804712&draw=2&rank=1.


Assuntos
Terapia Neoadjuvante , Neoplasias da Próstata , Animais , Antígeno B7-H1 , Humanos , Linfócitos do Interstício Tumoral , Masculino , Camundongos , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Rituximab/uso terapêutico , Linfócitos T , Microambiente Tumoral
14.
Cells ; 9(3)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143413

RESUMO

Colorectal cancer (CRC) is the third most common cancer type, and third highest in mortality rates among cancer-related deaths in the United States. Originating from intestinal epithelial cells in the colon and rectum, that are impacted by numerous factors including genetics, environment and chronic, lingering inflammation, CRC can be a problematic malignancy to treat when detected at advanced stages. Chemotherapeutic agents serve as the historical first line of defense in the treatment of metastatic CRC. In recent years, however, combinational treatment with targeted therapies, such as vascular endothelial growth factor, or epidermal growth factor receptor inhibitors, has proven to be quite effective in patients with specific CRC subtypes. While scientific and clinical advances have uncovered promising new treatment options, the five-year survival rate for metastatic CRC is still low at about 14%. Current research into the efficacy of immunotherapy, particularly immune checkpoint inhibitor therapy (ICI) in mismatch repair deficient and microsatellite instability high (dMMR-MSI-H) CRC tumors have shown promising results, but its use in other CRC subtypes has been either unsuccessful, or not extensively explored. This Review will focus on the current status of immunotherapies, including ICI, vaccination and adoptive T cell therapy (ATC) in the treatment of CRC and its potential use, not only in dMMR-MSI-H CRC, but also in mismatch repair proficient and microsatellite instability low (pMMR-MSI-L).


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Imunoterapia , Instabilidade de Microssatélites/efeitos dos fármacos , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Animais , Neoplasias Colorretais/patologia , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos
15.
Annu Rev Immunol ; 38: 649-671, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32040356

RESUMO

A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.


Assuntos
Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Microbioma Gastrointestinal , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Imunidade Adaptativa , Animais , Mucosa Gástrica/patologia , Microbioma Gastrointestinal/imunologia , Neoplasias Gastrointestinais/patologia , Humanos , Imunidade Inata , Mucosa Intestinal/patologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia
17.
Immunity ; 51(1): 15-26, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315033

RESUMO

In many settings, tumor-associated inflammation, supported mainly by innate immune cells, contributes to tumor growth. Initial innate activation triggers secretion of inflammatory, regenerative, and anti-inflammatory cytokines, which in turn shape the adaptive immune response to the tumor. Here, we review the current understanding of the intricate dialog between cancer-associated inflammation and anti-tumor immunity. We discuss the changing nature of these interactions during tumor progression and the impact of the tissue environment on the anti-tumor immune response. In this context, we outline important gaps in current understanding by considering basic research and findings in the clinic. The future of cancer immunotherapy and its utility depend on improved understanding of these interactions and the ability to manipulate them in a predictable and beneficial manner.


Assuntos
Imunidade , Imunoterapia/métodos , Neoplasias/imunologia , Evasão Tumoral , Animais , Humanos , Inflamação , Microambiente Tumoral
18.
Cell Metab ; 29(1): 18-26, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30449681

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal and fastest-growing cancers. Recently, non-alcoholic steatohepatitis (NASH) has been recognized as a major HCC catalyst. However, it is difficult to decipher the molecular mechanisms underlying the pathogenesis of NASH and understand how it progresses to HCC by studying humans. Progress in this field depends on the availability of reliable preclinical models amenable to genetic and functional analyses and exhibiting robust NASH-to-HCC progression. Although numerous mouse models of NASH have been described, many do not faithfully mimic the human disease and few reliably progress to HCC. Here, we review current literature on the molecular etiology of NASH-related HCC and critically evaluate existing mouse models and their suitability for studying this malignancy. We also compare human transcriptomic and histopathological profiles with data from MUP-uPA mice, a reliable model of NASH-driven HCC that has been useful for evaluation of HCC-targeting immunotherapies.


Assuntos
Carcinoma Hepatocelular/etiologia , Modelos Animais de Doenças , Neoplasias Hepáticas/etiologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Progressão da Doença , Humanos , Camundongos
19.
Proc Natl Acad Sci U S A ; 115(42): E9879-E9888, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30287485

RESUMO

Cancer genomics has enabled the exhaustive molecular characterization of tumors and exposed hepatocellular carcinoma (HCC) as among the most complex cancers. This complexity is paralleled by dozens of mouse models that generate histologically similar tumors but have not been systematically validated at the molecular level. Accurate models of the molecular pathogenesis of HCC are essential for biomedical progress; therefore we compared genomic and transcriptomic profiles of four separate mouse models [MUP transgenic, TAK1-knockout, carcinogen-driven diethylnitrosamine (DEN), and Stelic Animal Model (STAM)] with those of 987 HCC patients with distinct etiologies. These four models differed substantially in their mutational load, mutational signatures, affected genes and pathways, and transcriptomes. STAM tumors were most molecularly similar to human HCC, with frequent mutations in Ctnnb1, similar pathway alterations, and high transcriptomic similarity to high-grade, proliferative human tumors with poor prognosis. In contrast, TAK1 tumors better reflected the mutational signature of human HCC and were transcriptionally similar to low-grade human tumors. DEN tumors were least similar to human disease and almost universally carried the Braf V637E mutation, which is rarely found in human HCC. Immune analysis revealed that strain-specific MHC-I genotype can influence the molecular makeup of murine tumors. Thus, different mouse models of HCC recapitulate distinct aspects of HCC biology, and their use should be adapted to specific questions based on the molecular features provided here.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica , Genômica/métodos , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas/genética , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
20.
Nature ; 560(7717): 198-203, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046112

RESUMO

Dysregulated NLRP3 inflammasome activity results in uncontrolled inflammation, which underlies many chronic diseases. Although mitochondrial damage is needed for the assembly and activation of the NLRP3 inflammasome, it is unclear how macrophages are able to respond to structurally diverse inflammasome-activating stimuli. Here we show that the synthesis of mitochondrial DNA (mtDNA), induced after the engagement of Toll-like receptors, is crucial for NLRP3 signalling. Toll-like receptors signal via the MyD88 and TRIF adaptors to trigger IRF1-dependent transcription of CMPK2, a rate-limiting enzyme that supplies deoxyribonucleotides for mtDNA synthesis. CMPK2-dependent mtDNA synthesis is necessary for the production of oxidized mtDNA fragments after exposure to NLRP3 activators. Cytosolic oxidized mtDNA associates with the NLRP3 inflammasome complex and is required for its activation. The dependence on CMPK2 catalytic activity provides opportunities for more effective control of NLRP3 inflammasome-associated diseases.


Assuntos
DNA Mitocondrial/biossíntese , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Biocatálise , Citosol/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Oxirredução , Transdução de Sinais , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA