RESUMO
Introduction: Diagnostic genomic sequencing is the emerging standard of care in nephrology. There is a growing need to scale up the implementation of genomic diagnostics nationally to improve patient outcomes. Methods: This pragmatic study provided genomic or genetic testing to patients with suspected monogenic kidney disease through a national network of kidney genetics clinics (KGCs). We sought to evaluate the experiences of implementing genomic diagnostics across Australia and associated diagnostic outcomes between 2013 and 2022. Results: We successfully established and expanded a nationwide network of 20 clinics as of 2022; concurrently developing laboratory, research, and education programs to scale the clinical application of genomics in nephrology. We report on an Australian cohort of 1506 kidney patients, of whom 1322 received their test results. We assessed barriers to implementation in the nephrology context, and where possible, applied real-time solutions to improve clinical processes over 10 years. Conclusion: Developing a multidisciplinary kidney genetics model across multiple health services nationally was highly successful. This model supported optimal care of individuals with monogenic kidney disease in an economically responsible way. It has continued to evolve with technological and service developments and is now set to scale further as genomic testing for kidney patients transitions to health care system funding.
RESUMO
Heterozygous ARID1B variants result in Coffin-Siris syndrome. Features may include hypoplastic nails, slow growth, characteristic facial features, hypotonia, hypertrichosis, and sparse scalp hair. Most reported cases are due to ARID1B loss of function variants. We report a boy with developmental delay, feeding difficulties, aspiration, recurrent respiratory infections, slow growth, and hypotonia without a clinical diagnosis, where a previously unreported ARID1B missense variant was classified as a variant of uncertain significance. The pathogenicity of this variant was refined through combined methodologies including genome-wide methylation signature analysis (EpiSign), Machine Learning (ML) facial phenotyping, and LIRICAL. Trio exome sequencing and EpiSign were performed. ML facial phenotyping compared facial images using FaceMatch and GestaltMatcher to syndrome-specific libraries to prioritize the trio exome bioinformatic pipeline gene list output. Phenotype-driven variant prioritization was performed with LIRICAL. A de novo heterozygous missense variant, ARID1B p.(Tyr1268His), was reported as a variant of uncertain significance. The ACMG classification was refined to likely pathogenic by a supportive methylation signature, ML facial phenotyping, and prioritization through LIRICAL. The ARID1B genotype-phenotype has been expanded through an extended analysis of missense variation through genome-wide methylation signatures, ML facial phenotyping, and likelihood-ratio gene prioritization.
Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Masculino , Humanos , Proteínas de Ligação a DNA/genética , Hipotonia Muscular/patologia , Fatores de Transcrição/genética , Face/patologia , Anormalidades Múltiplas/diagnóstico , Micrognatismo/genética , Deficiência Intelectual/patologia , Deformidades Congênitas da Mão/genética , Pescoço/patologiaRESUMO
BACKGROUND: Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. METHODS: We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. RESULTS: We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. CONCLUSIONS: Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.
Assuntos
Fenda Labial , Fissura Palatina , Síndrome de Goldenhar , Humanos , Animais , Síndrome de Goldenhar/genética , Peixe-Zebra/genética , Variações do Número de Cópias de DNA/genética , Fatores de Transcrição Otx/genéticaRESUMO
As a result of the ongoing global expansion of genetic counseling, the need to formalize a system of professional regulation for genetic counselors was identified in Australasia. In June 2017, under the auspices of the Human Genetics Society of Australasia (HGSA), a working party was convened. The purpose of the working party was to provide strategic leadership for the profession of Australasian genetic counselors with a goal to formalize a national regulatory framework for genetic counselors across both Australian and New Zealand jurisdictions. This was ultimately achieved in Australia through full membership with the National Alliance of Self-Regulating Health Professions (NASRHP) while the profession of genetic counseling in New Zealand is utilizing this framework to establish their regulation pathway. Regulation has a number of implications for genetic counselors, their employers, and the wider community, with the primary purpose of regulation being protection of the public from harm. This paper details the process of formalizing self-regulation for genetic counselors in Australasia, by defining professional regulation; outlining the purpose of regulation and the status of regulation for genetic counselors in Australasia and internationally, as well as health professionals more broadly; exploring the challenges of establishing regulation in Australasia; and the next steps for regulation in Australasia. Through detailing this process, the intention is to provide a framework to support genetic counseling colleagues internationally as well as other health professions in Australasia to explore and achieve regulation through their respective jurisdiction.
Assuntos
Conselheiros , Austrália , Aconselhamento Genético , Humanos , Liderança , Nova ZelândiaRESUMO
OBJECTIVES: To evaluate children with cystic fibrosis (CF) who had a late diagnosis of CF (LD-CF) despite newborn screening (NBS) and compare their clinical outcomes with children diagnosed after a positive NBS (NBS-CF). STUDY DESIGN: A retrospective review of patients with LD-CF in New South Wales, Australia, from 1988 to 2010 was performed. LD-CF was defined as NBS-negative (negative immunoreactive trypsinogen or no F508del) or NBS-positive but discharged following sweat chloride < 60 mmol/L. Cases of LD-CF were each matched 1:2 with patients with NBS-CF for age, sex, hospital, and exocrine pancreatic status. RESULTS: A total of 45 LD-CF cases were identified (39 NBS-negative and 6 NBS-positive) with 90 NBS-CF matched controls. Median age (IQR) of diagnosis for LD-CF and NBS-CF was 1.35 (0.4-2.8) and 0.12 (0.03-0.2) years, respectively (P <.0001). Estimated incidence of LD-CF was 1 in 45 000 live births. Compared with NBS-CF, LD-CF had more respiratory manifestations at time of diagnosis (66% vs 4%; P <.0001), a higher rate of hospital admission per year for respiratory illness (0.49 vs 0.2; P = .0004), worse lung function (forced expiratory volume in 1 second percentage of predicted, 0.88 vs 0.97; P = .007), and higher rates of chronic colonization with Pseudomonas aeruginosa (47% vs 24%; P = .01). The LD-CF cohort also appeared to be shorter than NBS-CF controls (mean height z-score -0.65 vs -0.03; P = .02). CONCLUSIONS: LD-CF, despite NBS, seems to be associated with worse health before diagnosis and worse later growth and respiratory outcomes, thus providing further support for NBS programs for CF.
Assuntos
Fibrose Cística/diagnóstico , Diagnóstico Tardio/efeitos adversos , Hospitalização/estatística & dados numéricos , Triagem Neonatal/métodos , Avaliação de Resultados em Cuidados de Saúde , Fatores Etários , Fibrose Cística/mortalidade , Fibrose Cística/terapia , Bases de Dados Factuais , Progressão da Doença , Feminino , Humanos , Recém-Nascido , Masculino , New South Wales , Prognóstico , Testes de Função Respiratória , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Taxa de SobrevidaRESUMO
BACKGROUND: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. RESULTS: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46,XY DSD and 48 with 46,XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46,XY DSD. In patients with 46,XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. CONCLUSIONS: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes.