Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 10050-10056, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38745389

RESUMO

Establishing homojunctions at the molecular level between different but physicochemically similar phases belonging to the same family of materials is an effective approach to promoting the photocatalytic activity of polymeric carbon nitride (CN) materials. Here, we prepared a CN material with a uniform distribution of homojunctions by combining two synthetic strategies: supramolecular assemblies as the precursor and molten salt as the medium. We designed porous CN rods with triazine-heptazine homojunctions (THCNs) using a melem supramolecular aggregate (Me) and melamine as the precursors and a KCl/LiBr salt mixture as the liquid reaction medium. The triazine/heptazine ratio is controlled by varying the relative amounts of the chosen precursors, and the molten salt treatment enhances the structural order of the interplanar packing units for the THCN skeleton, leading to rapid charge migration. The resulting built-in electric field induced by the triazine-heptazine homojunction enhances photogenerated charge separation; the optimal THCN catalyst exhibits an excellent H2 evolution rate via photocatalytic water splitting, which is ∼24 times as high as that of reference bulk CN, with long-term stability.

2.
Angew Chem Int Ed Engl ; : e202405664, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695160

RESUMO

The prevailing view about molecular catalysts is that the central metal ion is responsible for the reaction mechanism and selectivity, whereas the ligands mainly affect the reaction kinetics. Here, we question this paradigm and show that ligands have a dramatic influence on the selectivity of the product. We show how even a seemingly small change in ligand isomerization sharply alters the selectivity of the well-researched oxygen reduction reaction (ORR) Co phthalocyanine catalyst from an indirect 2e- to a direct 4e- pathway. Detailed analysis reveals that intramolecular hydrogen-bond interactions in the ligand activate the catalytic Co, directing the oxygen binding and thus deciding the final product. The resulting catalyst is the first example of a Co-based molecular catalyst catalyzing a direct 4e- ORR via ligand isomerization, for which it shows an activity close to the benchmark Pt in an actual H2-O2 fuel cell. The effect of the ligand isomerism is demonstrated with different central metal ions, thus highlighting the generalizability of the findings and their potential to open new possibilities in the design of molecular catalysts.

3.
Nat Commun ; 15(1): 3397, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649389

RESUMO

Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at -0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.

4.
ACS Nano ; 17(18): 18217-18226, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37668497

RESUMO

The high salinity of seawater often strongly affects the activity and stability of photocatalysts utilized for photodriven seawater splitting. The current investigation is focused on the photocatalyst H-TiO2/Cu2O, comprised of hydroxyl-enriched hollow mesoporous TiO2 microspheres containing incorporated Cu2O nanoparticles. The design of H-TiO2/Cu2O is based on the hypothesis that the respective hollow and mesoporous structure and hydrophilic surfaces of TiO2 microspheres would stabilize Cu2O nanoparticles in seawater and provide efficient and selective proton adsorption. H-TiO2/Cu2O shows hydrogen production performances of 45.7 mmol/(g·h) in simulated seawater and 17.9 mmol/(g·h) in natural seawater, respectively. An apparent quantum yield (AQY) in hydrogen production of 18.8% in water (and 14.9% in natural seawater) was obtained at 365 nm. Moreover, H-TiO2/Cu2O displays high stability and can maintain more than 90% hydrogen evolution activity in natural seawater for 30 h. A direct mass- and energy- transfer mechanism is proposed to clarify the superior performance of H-TiO2/Cu2O in seawater splitting.

5.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764252

RESUMO

Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. To determine the underlying catalytic mechanisms and overall contributions that will improve performance, the electronic structure of gCN materials has been investigated using electron paramagnetic resonance (EPR) spectroscopy. Through lineshape analysis and relaxation behavior, evidence of two independent spin species were determined to be present in catalytically active gCN materials. These two contributions to the total lineshape respond independently to light exposure such that the previously established catalytically active spin system remains responsive while the newly observed, superimposed EPR signal is not increased during exposure to light. The time dependence of these two peaks present in gCN EPR spectra recorded sequentially in air over several months demonstrates a steady change in the electronic structure of the gCN framework over time. This light-independent, slowly evolving additional spin center is demonstrated to be the result of oxidative processes occurring as a result of exposure to the environment and is confirmed by forced oxidation experiments. This oxidized gCN exhibits lower H2 production rates and indicates quenching of the overall gCN catalytic activity over longer reaction times. A general model for the newly generated spin centers is given and strategies for the alleviation of oxidative products within the gCN framework are discussed in the context of improving photocatalytic activity over extended durations as required for future functional photocatalytic device development.

6.
Chemistry ; 29(62): e202302377, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37605638

RESUMO

Carbon nitride materials (CN) have become one of the most studied photocatalysts within the last 15 years. While CN absorbs visible light, its low porosity and fast electron-hole recombination hinder its photoelectric performance and have motivated the research in the modification of its physical and chemical properties (such as energy band structure, porosity, or chemical composition) by different means. In this Concept we review the utilization of supramolecular crystals as CN precursors to tailor its properties. We elaborate on the features needed in a supramolecular crystal to serve as CN precursor, we delve on the influence of metal-free crystals in the morphology and porosity of the resulting materials and then discuss the formation of single atoms and heterojunctions when employing a metal-organic crystal. We finally discuss the performance of CN photoanodes derived from crystals and highlight the current standing challenges in the field.

7.
Angew Chem Int Ed Engl ; 62(40): e202311389, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581951

RESUMO

The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride-based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, was not shown. Here, we report the large-scale synthesis of chiral CN materials capable of enantioselective recognition. To achieve this, we designed supramolecular assemblies with a chiral center that remains intact at elevated temperatures. The optimized chiral CN demonstrates an enantiomeric preference of ca. 14 %; CN electrodes were also prepared and show stereoselective interactions with enantiomeric probes in electrochemical measurements. By adding chirality to the properties transferrable from monomers to the final product of a thermal polymerization, this study confirms the potential of using supramolecular precursors to produce carbon and CN materials and electrodes with designed chemical properties.

8.
Small ; 19(42): e2303602, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37344993

RESUMO

Polymeric carbon nitride is a promising photoanode material for water-splitting and organic transformation-based photochemical cells. Despite achieving significant progress in performance, these materials still exhibit low photoactivity compared to inorganic photoanodic materials because of a moderate visible light response, poor charge separation, and slow oxidation kinetics. Here, the synthesis of a sodium- and boron-doped carbon nitride layer with excellent activity as a photoanode in a water-splitting photoelectrochemical cell is reported. The new synthesis consists of the direct growth of carbon nitride (CN) monomers from a hot precursor solution, enabling control over the monomer-to-dopant ratio, thus determining the final CN properties. The introduction of Na and B as dopants results in a dense CN layer with a packed morphology, better charge separation thanks to the in situ formation of an electron density gradient, and an extended visible light response up to 550 nm. The optimized photoanode exhibits state-of-the-art performance: photocurrent densities with and without a hole scavenger of about 1.5 and 0.9 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), and maximal external quantum efficiencies of 56% and 24%, respectively, alongside an onset potential of 0.3 V.

9.
Nano Lett ; 23(10): 4390-4398, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154763

RESUMO

Photocatalysts for seawater splitting are severely restricted because of the presence of multiple types of ions in seawater that cause corrosion and deactivation. As a result, new materials that promote adsorption of H+ and hinder competing adsorption of metal cations should enhance utilization of photogenerated electrons on the catalyst surface for efficient H2 production. One strategy to design advanced photocatalysts involves introduction of hierarchical porous structures that enable fast mass transfer and creation of defect sites that promote selective hydrogen ion adsorption. Herein, we used a facile calcination method to fabricate the macro-mesoporous C3N4 derivative, VN-HCN, that contains multiple nitrogen vacancies. We demonstrated that VN-HCN has enhanced corrosion resistance and elevated photocatalytic H2 production performance in seawater. Experimental results and theoretical calculations reveal that enhanced mass and carrier transfer and selective adsorption of hydrogen ions are key features of VN-HCN that lead to its high seawater splitting activity.

10.
ChemSusChem ; 16(10): e202300621, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37203229

RESUMO

Invited for this month's cover are the groups of Menny Shalom at the Ben-Gurion University of the Negev, Israel and Dr. Biswajit Mondal at Indian Institute of Technology Gandhinagar, India. The image shows the connection between two half-cells: an electron transfer-mediated [(2,2,6,6-tetramethyl-1-piperidin-1-yl)oxyl] (TEMPO)-catalyzed benzylamine oxidation at the anode and a proton-coupled electron transfer at the cathode for hydrogen generation. The difference in pH dependence of the anodic and cathodic processes enables hybrid water electrolysis at low cell potential (∼1.0 V) by adjusting only the pH value of the electrolytic medium. The Research Article itself is available at 10.1002/cssc.202202271.

11.
Angew Chem Int Ed Engl ; 62(14): e202216434, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36748541

RESUMO

Poly (triazine imide) photocatalysts prepared via molten salt methods emerge as promising polymer semiconductors with one-step excitation capacity of overall water splitting. Unveiling the molecular conjugation, nucleation, and crystallization processes of PTI crystals is crucial for their controllable structure design. Herein, microscopy characterization was conducted at the PTI crystallization front from meso to nano scales. The heptazine-based precursor was found to depolymerize to triazine monomers within molten salts and KCl cubes precipitate as the leading cores that guide the directional stacking of PTI molecular units to form aggregated crystals. Upon this discovery, PTI crystals with improved dispersibility and enhanced photocatalytic performance were obtained by tailoring the crystallization fronts. This study advances insights into the directional assembling of PTI monomers on salt templates, placing a theoretical foundation for the ordered condensation of polymer crystals.

12.
Mater Horiz ; 10(4): 1363-1372, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36723245

RESUMO

Polymeric carbon nitride (CN) has emerged as an attractive material for photocatalysis and photoelectronic devices. However, the synthesis of porous CNs with controlled structural and optical properties remains a challenge, and processable CN precursors are still highly sought after for fabricating homogenous CN layers strongly bound to a given substrate. Here, we report a general method to synthesize highly dispersed porous CN materials that show excellent photocatalytic activity for the hydrogen evolution reaction and good performance as photoanodes in photoelectrochemical cells (PEC): first, supramolecular assemblies of melem and melamine in ethylene glycol and water are prepared using a hydrothermal process. These precursors are then calcined to yield a water-dispersible CN photocatalyst that exhibits beneficial charge separation under illumination, extended visible-light response attributed to carbon doping, and a large number of free amine groups that act as preferential sites for a Pt cocatalyst. The optimized CN exhibits state-of-the-art HER rates up to 23.1 mmol h-1 g-1, with an AQE of 19.2% at 395 nm. This unique synthetic route enables the formation of a homogeneous precursor paste for substrate casting; consequently, the CN photoanode exhibits a low onset potential, a high photocurrent density and good stability after calcination.

13.
Ann N Y Acad Sci ; 1521(1): 5-13, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719040

RESUMO

Polymeric carbon nitride (CN) materials are promising low-cost photocatalysts that exhibit a combination of chemical and physical properties suitable for converting light into redox activity on their surface. In this perspective, we describe our experience with this family of materials as light absorbers that serve as an anode in photoelectrochemical cells toward water-splitting. We describe some of the CN deposition techniques and procedures established in our lab. The knowledge gained from powder-based photocatalysis is implemented in photoelectrochemical scenarios and is used to determine the merits and shortcomings of resulting layers. We show how the preparation methods are oriented based on these factors and how high photoelectrochemical water-splitting activity develops in photoanodes we developed where CN(s) act as photoabsorbers. Lastly, we present our view on the future prospects of this field.


Assuntos
Conhecimento , Polímeros , Humanos , Pós , Água
14.
ChemSusChem ; 16(10): e202202271, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36576299

RESUMO

Electrolysis of water is a sustainable route to produce clean hydrogen. Full water-splitting requires a high applied potential, in part because of the pH-dependency of the H2 and O2 evolution reactions (HER and OER), which are proton-coupled electron transfer (PCET) reactions. Therefore, the minimum required potential will not change at different pHs. TEMPO [(2,2,6,6-tetramethyl-1-piperidin-1-yl)oxyl], a stable free-radical that undergoes fast electro-oxidation by a single-electron transfer (ET) process, is pH-independent. Here, we show that the combination of PCET and ET processes enables hydrogen production from water at low cell potentials below the theoretical value for full water-splitting by simple pH adjustment. As a case study, we combined the HER with the oxidation of benzylamine by anodically oxidized TEMPO. The pH-independent electrocatalytic oxidation of TEMPO permits the operation of a hybrid water-splitting cell that shows promise to perform at a low cell potential (≈1 V) and neutral pH conditions.

15.
Nanoscale ; 14(36): 13373-13377, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36069354

RESUMO

The n-p homojunction design in semiconductors could enable directed charge transfer, which is promising but rarely reported. Herein, TiO2 with a spatial n-p homojunction has been designed by decorating TiO2 nanosheets with Ti vacancies around nanostructured TiO2 with O vacancies. 2D 1H TQ-SQ MAS NMR, EPR and XPS show the junction of titanium vacancies and oxygen vacancies at the interface. This spatial homojunction contributes to a significant enhancement in photoelectrochemical and photocatalytic performance, especially photocatalytic seawater splitting. Density functional theory calculations of the charge density reveal the directional n-p charge transfer path at the interface, which is proposed at the atomic-/nanoscale to clarify the generation of rational junctions. The spatial n-p homojunction provides a facile strategy for the design of high-performance semiconductors.

16.
J Mater Chem A Mater ; 10(31): 16585-16594, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36091884

RESUMO

The photoelectrochemical oxidation of organic molecules into valuable chemicals is a promising technology, but its development is hampered by the poor stability of photoanodic materials in aqueous solutions, low faradaic efficiency, low product selectivity, and a narrow working pH range. Here, we demonstrate the synthesis of value-added aldehydes and carboxylic acids with clean hydrogen (H2) production in water using a photoelectrochemical cell based solely on polymeric carbon nitride (CN) as the photoanode. Isotope labeling measurements and DFT calculations reveal a preferential adsorption of benzyl alcohol and molecular oxygen to the CN layer, enabling fast proton abstraction and oxygen reduction, which leads to the synthesis of an aldehyde at the first step. Further oxidation affords the corresponding acid. The CN photoanode exhibits excellent stability (>40 h) and activity for the oxidation of a wide range of substituted benzyl alcohols with high yield, selectivity (up to 99%), and faradaic efficiency (>90%).

17.
Chemistry ; 28(58): e202201969, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35899467

RESUMO

The design of efficient self-standing hybrid systems for water purification that combines good adsorption properties with high photodegradation ability is highly challenging owing to the difficulty in simultaneously controlling the band structure and porosity of a semiconductor while maintaining its self-standing nature. Here, we report the synthesis of carbon-rich carbon nitride self-standing filters from supramolecular hydrogels composed of melamine and cyanobenzoic acid. The influence of the chemical structure on the properties of the hydrogels and the final films was studied by tuning parameters such as monomer nature, molar ratio, and pyrolysis temperature. Thanks to their ability to combine the adsorption and photodegradation of organic pollutants, the prepared self-standing films showed remarkable activity and stability in flow conditions (>95 % efficiency after 10 consecutive cycles). Additionally, the photocatalytic activity of the films was assessed in the powder form for the hydrogen evolution reaction and photocurrent generation in a photoelectrochemical cell. The reported work opens opportunities for the controlled synthesis of multifunctional filters for water purification and other energy-related and sustainable technologies.

18.
Chem Sci ; 13(24): 7126-7131, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799830

RESUMO

Directed transfer of carriers, akin to excited charges in photosynthesis, in semiconductors by structural design is challenging. Here, TiO2 nanosheets with interlayered sp2 carbon and titanium vacancies are obtained by low-temperature controlled oxidation calcination. The directed transfer of carriers from the excited position to Ti-vacancies to interlayered carbon is investigated and proven to greatly increase the charge transport efficiency. The TiO2/C obtained demonstrates excellent photocatalytic and photoelectrochemical activity and significant lithium/sodium ion storage performance. Further theoretical calculations reveal that the directional excited position/Ti-vacancies/interlayered carbon facilitate the spatial inside-out cascade electron transfer, resulting in high charge transfer kinetics.

19.
ChemSusChem ; 15(8): e202200330, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212173

RESUMO

Polymeric carbon nitride (PCN) has attracted intensive interest as sustainable, metal-free semiconductor for photoelectrochemical (PEC) water splitting. Charge transfer along the films acts as the main concern to restrict the performance due to the amorphous nature of polymer. Herein, gradient concentration of cobalt disulfide (CoS2 ) merged in PCN films was realized as CSCN photoanode by a one-pot synthesis. Owing to the unique properties of CoS2 , namely high conductivity, the charge transfer of the CSCN photoanode was promoted, and thus the performance for PEC water oxidation was improved. The optimal photoanode exhibited a photoanodic current of 200 µA cm-2 at 1.23 V versus reversible hydrogen electrode under air mass 1.5 global (AM 1.5G) illumination, which was approximately 4 times that of the pristine PCN photoanode. This work provides a new design of metal-free photoanodes to improve the performance of water splitting.

20.
Nanoscale ; 13(46): 19511-19517, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797356

RESUMO

Intrinsic defects and structural properties are two main factors influencing the photocatalytic performance of carbon nitride (CN) materials. Here, photoactive porous CN rods are fabricated through the thermal condensation of melem-based hexagonal supramolecular assemblies. To overcome the poor solubility of melem, we exfoliate the bulk melem using hydrochloric acid. The latter allows good dispersibility of the monomer in an aqueous medium, leading to the formation of H-bond bridged supramolecular assembly with good regularity in both size and rod-like morphology. After thermal condensation, a well-ordered structure of porous CN rods with fewer defects due to the high thermal stability of the melem-based supramolecular assembly is obtained. The new CN materials have a high specific surface area, good light-harvesting properties, and enhanced charge separation and migration. The optimal CN material exhibits excellent photocatalytic activity and durability towards hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR, with good selectivity).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA