Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578967

RESUMO

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

2.
Biochemistry ; 63(5): 599-609, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38357768

RESUMO

Adenylate kinases (AKs) have evolved AMP-binding and lid domains that are encoded as continuous polypeptides embedded at different locations within the discontinuous polypeptide encoding the core domain. A prior study showed that AK homologues of different stabilities consistently retain cellular activity following circular permutation that splits a region with high energetic frustration within the AMP-binding domain into discontinuous fragments. Herein, we show that mesophilic and thermophilic AKs having this topological restructuring retain activity and substrate-binding characteristics of the parental AK. While permutation decreased the activity of both AK homologues at physiological temperatures, the catalytic activity of the thermophilic AK increased upon permutation when assayed >30 °C below the melting temperature of the native AK. The thermostabilities of the permuted AKs were uniformly lower than those of native AKs, and they exhibited multiphasic unfolding transitions, unlike the native AKs, which presented cooperative thermal unfolding. In addition, proteolytic digestion revealed that permutation destabilized each AK in differing manners, and mass spectrometry suggested that the new termini within the AMP-binding domain were responsible for the increased proteolysis sensitivity. These findings illustrate how changes in contact order can be used to tune enzyme activity and alter folding dynamics in multidomain enzymes.


Assuntos
Adenilato Quinase , Peptídeos , Adenilato Quinase/química , Sequência de Aminoácidos , Temperatura
3.
Antimicrob Agents Chemother ; 68(3): e0106923, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289081

RESUMO

Daptomycin (DAP) is often used as a first-line therapy to treat vancomycin-resistant Enterococcus faecium infections, but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP minimum inhibitory concentrations (MICs) have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system, and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ. In Enterococcus faecalis, LiaX is surface-exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis, LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium. Here, we found that liaX is essential in E. faecium with an activated LiaFSR system. Unlike E. faecalis, E. faecium LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX enzyme-linked immunosorbent assay (ELISA). We then assessed 86 clinical E. faecium bloodstream isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-resistant clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-susceptible isolates by standard MIC determination also had elevated LiaX ELISAs compared to a well-characterized DAP-susceptible strain. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many E. faecium isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.


Assuntos
Membrana Celular , Daptomicina , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Antibacterianos/uso terapêutico , Biomarcadores/metabolismo , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Farmacorresistência Bacteriana/genética , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/metabolismo , Testes de Sensibilidade Microbiana , Filogenia , Reprodutibilidade dos Testes
4.
mBio ; : e0150623, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847036

RESUMO

Antibiotic resistance is a continuing global health crisis. Identifying the evolutionary trajectories leading to increased antimicrobial resistance can be critical to the discovery of biomarkers for clinical diagnostics and new targets for drug discovery. While the combination of patient data and in vitro experimental evolution has been remarkably successful in extending our understanding of antimicrobial resistance, it can be difficult for in vitro methods to recapitulate the spatial structure and consequent microenvironments that characterize in vivo infection. Notably, in cystic fibrosis (CF) patients, changes to either the PmrA/PmrB or PhoP/PhoQ two-component systems have been identified as critical drivers for high levels of colistin and polymyxin resistance. When using microfluidic emulsions to provide spatially structured, low-competition environments, we found that adaptive mutations to phoQ were more successful than pmrB in increasing colistin resistance. Conversely, mutations to pmrB were readily identified using well-mixed unstructured cultures. We found that oxygen concentration gradients within the microdroplet emulsions favored adaptive changes to the PhoP/PhoQ pathway consistent with microaerobic conditions that can be found in the lungs of CF patients. We also observed mutations linked to hallmark adaptations to the CF lung environment, such as loss of motility and loss of O antigen biosynthesis (wbpL). Mutation to wbpL, in addition to causing loss of O antigen, was additionally shown to confer moderately increased colistin resistance. Taken together, our data suggest that distinct evolutionary trajectories to colistin resistance may be shaped by the microaerobic partitioning and spatial separation imposed within the CF lung.IMPORTANCEAntibiotic resistance remains one of the great challenges confronting public health in the world today. Individuals with compromised immune systems or underlying health conditions are often at an increased for bacterial infections. Patients with cystic fibrosis (CF) produce thick mucus that clogs airways and provides a very favorable environment for infection by bacteria that further decrease lung function and, ultimately, mortality. CF patients are often infected by bacteria such as Pseudomonas aeruginosa early in life and experience a series of chronic infections that, over time, become increasingly difficult to treat due to increased antibiotic resistance. Colistin is a major antibiotic used to treat CF patients. Clinical and laboratory studies have identified PmrA/PmrB and PhoP/PhoQ as responsible for increased resistance to colistin. Both have been identified in CF patient lungs, but why, in some cases, is it one and not the other? In this study, we show that distinct evolutionary trajectories to colistin resistance may be favored by the microaerobic partitioning found within the damaged CF lung.

5.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904970

RESUMO

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

6.
Appl Environ Microbiol ; 89(9): e0076423, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37699129

RESUMO

The application of microfluidic techniques in experimental and environmental studies is a rapidly emerging field. Water-in-oil microdroplets can serve readily as controllable micro-vessels for studies that require spatial structure. In many applications, it is useful to monitor cell growth without breaking or disrupting the microdroplets. To this end, optical reporters based on color, fluorescence, or luminescence have been developed. However, optical reporters suffer from limitations when used in microdroplets such as inaccurate readings due to strong background interference or limited sensitivity during early growth stages. In addition, optical detection is typically not amenable to filamentous or biofilm-producing organisms that have significant nonlinear changes in opacity and light scattering during growth. To overcome such limitations, we show that volatile methyl halide gases produced by reporter cells expressing a methyl halide transferase (MHT) can serve as an alternative nonoptical detection approach suitable for microdroplets. In this study, an MHT-labeled Streptomyces venezuelae reporter strain was constructed and characterized. Protocols were established for the encapsulation and incubation of S. venezuelae in microdroplets. We observed the complete life cycle for S. venezuelae including the vegetative expansion of mycelia, mycelial fragmentation, and late-stage sporulation. Methyl bromide (MeBr) production was detected by gas chromatography-mass spectrometry (GC-MS) from S. venezuelae gas reporters incubated in either liquid suspension or microdroplets and used to quantitatively estimate bacterial density. Overall, using MeBr production as a means of quantifying bacterial growth provided a 100- to 1,000-fold increase in sensitivity over optical or fluorescence measurements of a comparable reporter strain expressing fluorescent proteins. IMPORTANCE Quantitative measurement of bacterial growth in microdroplets in situ is desirable but challenging. Current optical reporter systems suffer from limitations when applied to filamentous or biofilm-producing organisms. In this study, we demonstrate that volatile methyl halide gas production can serve as a quantitative nonoptical growth assay for filamentous bacteria encapsulated in microdroplets. We constructed an S. venezuelae gas reporter strain and observed a complete life cycle for encapsulated S. venezuelae in microdroplets, establishing microdroplets as an alternative growth environment for Streptomyces spp. that can provide spatial structure. We detected MeBr production from both liquid suspension and microdroplets with a 100- to 1,000-fold increase in signal-to-noise ratio compared to optical assays. Importantly, we could reliably detect bacteria with densities down to 106 CFU/mL. The combination of quantitative gas reporting and microdroplet systems provides a valuable approach to studying fastidious organisms that require spatial structure such as those found typically in soils.


Assuntos
Gases , Transferases , Emulsões , Fluorescência
7.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577577

RESUMO

Daptomycin is a last-resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by re-distributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a three-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the two genes ( cls1 and cls2 ) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, as an important mediator of CM remodeling required for re-distribution of anionic phospholipid microdomains via interactions with Cls1. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.

8.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645818

RESUMO

Daptomycin (DAP) is often used as a first line therapy to treat vancomycin-resistant Enterococcus faecium (VR Efm ) infections but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP MICs have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ . In Enterococcus faecalis , LiaX is surface exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis , LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium . Here, we found that liaX is essential in E. faecium ( Efm ) with an activated LiaFSR system. Unlike E. faecalis , Efm LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX ELISA. We then assessed 86 clinical E. faecium BSI isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-R clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-S isolates by standard MIC determination had elevated LiaX ELISAs above the established cut-off. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many Efm isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.

9.
ACS Synth Biol ; 12(4): 1239-1251, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36929925

RESUMO

Spatial structure within microbial communities can provide nearly limitless opportunities for social interactions and are an important driver for evolution. As metabolites are often molecular signals, metabolite diffusion within microbial communities can affect the composition and dynamics of the community in a manner that can be challenging to deconstruct. We used encapsulation of a synthetic microbial community within microdroplets to investigate the effects of spatial structure and metabolite diffusion on population dynamics and to examine the effects of cheating by one member of the community. The synthetic community was composed of three strains: a "Producer" that makes the diffusible quorum sensing molecule (N-(3-oxododecanoyl)-l-homoserine lactone, C12-oxo-HSL) or AHL; a "Receiver" that is killed by AHL; and a Non-Producer or "cheater" that benefits from the extinction of the Receivers, but without the costs associated with the AHL synthesis. We demonstrate that despite rapid diffusion of AHL between microdroplets, the spatial structure imposed by the microdroplets allows a more efficient but transient enrichment of more rare and slower-growing Producer subpopulations. Eventually, the Non-Producer population drove the Producers to extinction. By including fluorescence-activated microdroplet sorting and providing sustained competition by the Receiver strain, we demonstrate a strategy for indirect enrichment of a rare and unlabeled Producer. The ability to screen and enrich metabolite Producers from a much larger population under conditions of rapid diffusion provides an important framework for the development of applications in synthetic ecology and biotechnology.


Assuntos
4-Butirolactona , Lactonas , Lactonas/metabolismo , Percepção de Quorum/genética
10.
ACS Infect Dis ; 9(2): 308-321, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36662533

RESUMO

In vitro experimental evolution has complemented clinical studies as an excellent tool to identify genetic changes responsible for the de novo evolution of antimicrobial resistance. However, the in vivo context for adaptation contributes to the success of particular evolutionary trajectories, especially in intracellular niches where the adaptive landscape of virulence and resistance are strongly coupled. In this work, we designed an ex vivo evolution approach to identify evolutionary trajectories responsible for antibiotic resistance in the Live Vaccine Strain (LVS) of Francisella tularensis subsp. holarctica while being passaged to increasing ciprofloxacin (CIP) and doxycycline (DOX) concentrations within macrophages. Overall, adaptation within macrophages advanced much slower when compared to previous in vitro evolution studies reflecting a limiting capacity for the expansion of adaptive mutations within the macrophage. Longitudinal genomic analysis identified resistance conferring gyrase mutations outside the Quinolone Resistance Determining Region. Strikingly, FupA/B mutations that are uniquely associated with in vitro CIP resistance in Francisella were not observed ex vivo, reflecting the coupling of intracellular survival and resistance during intracellular adaptation. To our knowledge, this is the first experimental study demonstrating the ability to conduct experimental evolution to antimicrobial resistance within macrophages. The results provide evidence of differences in mutational profiles of populations adapted to the same antibiotic in different environments/cellular compartments and underscore the significance of host mediated stress during resistance evolution.


Assuntos
Francisella tularensis , Vacinas , Francisella tularensis/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Ciprofloxacina/farmacologia
11.
bioRxiv ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711600

RESUMO

Spatial structure within microbial communities can provide nearly limitless opportunities for social interactions and are an important driver for evolution. As metabolites are often molecular signals, metabolite diffusion within microbial communities can affect the composition and dynamics of the community in a manner that can be challenging to deconstruct. We used encapsulation of a synthetic microbial community within microdroplets to investigate the effects of spatial structure and metabolite diffusion on population dynamics and to examine the effects of cheating by one member of the community. The synthetic community was comprised of three strains: a 'Producer' that makes the diffusible quorum sensing molecule ( N -(3-Oxododecanoyl)-L-homoserine lactone, C12-oxo-HSL) or AHL; a 'Receiver' that is killed by AHL and a Non-Producer or 'cheater' that benefits from the extinction of the Receivers, but without the costs associated with the AHL synthesis. We demonstrate that despite rapid diffusion of AHL between microdroplets, the spatial structure imposed by the microdroplets allow a more efficient but transient enrichment of more rare and slower growing 'Producer' subpopulations. Eventually, the Non-Producer population drove the Producers to extinction. By including fluorescence-activated microdroplet sorting and providing sustained competition by the Receiver strain, we demonstrate a strategy for indirect enrichment of a rare and unlabeled Producer. The ability to screen and enrich metabolite Producers from a much larger population under conditions of rapid diffusion provides an important framework for the development of applications in synthetic ecology and biotechnology.

12.
J Biol Chem ; 299(3): 102912, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649910

RESUMO

Daptomycin (DAP) is an antibiotic frequently used as a drug of last resort against vancomycin-resistant enterococci. One of the major challenges when using DAP against vancomycin-resistant enterococci is the emergence of resistance, which is mediated by the cell-envelope stress system LiaFSR. Indeed, inhibition of LiaFSR signaling has been suggested as a strategy to "resensitize" enterococci to DAP. In the absence of LiaFSR, alternative pathways mediating DAP resistance have been identified, including adaptive mutations in the enolpyruvate transferase MurAA (MurAAA149E), which catalyzes the first committed step in peptidoglycan biosynthesis; however, how these mutations confer resistance is unclear. Here, we investigated the biochemical basis for MurAAA149E-mediated adaptation to DAP to determine whether such an alternative pathway would undermine the potential efficacy of therapies that target the LiaFSR pathway. We found cells expressing MurAAA149E had increased susceptibility to glycoside hydrolases, consistent with decreased cell wall integrity. Furthermore, structure-function studies of MurAA and MurAAA149E using X-ray crystallography and biochemical analyses indicated only a modest decrease in MurAAA149E activity, but a 16-fold increase in affinity for MurG, which performs the last intracellular step of peptidoglycan synthesis. Exposure to DAP leads to mislocalization of cell division proteins including MurG. In Bacillus subtilis, MurAA and MurG colocalize at division septa and, thus, we propose MurAAA149E may contribute to DAP nonsusceptibility by increasing the stability of MurAA-MurG interactions to reduce DAP-induced mislocalization of these essential protein complexes.


Assuntos
Daptomicina , Enterococcus faecium , Transferases , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Daptomicina/metabolismo , Daptomicina/farmacologia , Farmacorresistência Bacteriana , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/metabolismo , Testes de Sensibilidade Microbiana , Peptidoglicano/metabolismo , Transferases/metabolismo
13.
Front Microbiol ; 13: 904822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615518

RESUMO

Combination antimicrobial therapy has been considered a promising strategy to combat the evolution of antimicrobial resistance. Francisella tularensis is the causative agent of tularemia and in addition to being found in the nature, is recognized as a threat agent that requires vigilance. We investigated the evolutionary outcome of adapting the Live Vaccine Strain (LVS) of F. tularensis subsp. holarctica to two non-interacting drugs, ciprofloxacin and doxycycline, individually, sequentially, and in combination. Despite their individual efficacies and independence of mechanisms, evolution to the combination arose on a shorter time scale than evolution to the two drugs sequentially. We conducted a longitudinal mutational analysis of the populations evolving to the drug combination, genetically reconstructed the identified evolutionary pathway, and carried out biochemical validation. We discovered that, after the appearance of an initial weak generalist mutation (FupA/B), each successive mutation alternated between adaptation to one drug or the other. In combination, these mutations allowed the population to more efficiently ascend the fitness peak through a series of evolutionary switch-backs. Clonal interference, weak pleiotropy, and positive epistasis also contributed to combinatorial evolution. This finding suggests that the use of this non-interacting drug pair against F. tularensis may render both drugs ineffective because of mutational switch-backs that accelerate evolution of dual resistance.

14.
STAR Protoc ; 3(2): 101332, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496805

RESUMO

Microdroplet emulsions allow investigators to build controllable microenvironments for applications in experimental evolution and synthetic ecology. We designed a microfluidic platform that uses highly homogenous microdroplets to enable these experiments. We also present a step-by-step protocol for the rapid production of highly homogeneous microdroplets suitable for experimental evolution. We also describe protocols for the propagation and serial passage of microbial populations across a range of selection schemes and potential spatial structures. For complete details on the use and execution of this protocol, please refer to Seo et al. (2021).


Assuntos
Escherichia coli , Microfluídica , Emulsões , Escherichia coli/genética , Microfluídica/métodos , Pesquisa
15.
Antimicrob Agents Chemother ; 66(6): e0233321, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35543524

RESUMO

Infections caused by vancomycin-resistant Enterococcus faecium (VREfm) are an important public health threat. VREfm isolates have become increasingly resistant to the front-line antibiotic daptomycin (DAP). As such, the use of DAP combination therapies with other antibiotics like fosfomycin (FOS) has received increased attention. Antibiotic combinations could extend the efficacy of currently available antibiotics and potentially delay the onset of further resistance. We investigated the potential for E. faecium HOU503, a clinical VREfm isolate that is DAP and FOS susceptible, to develop resistance to a DAP-FOS combination. Of particular interest was whether the genetic drivers for DAP-FOS resistance might be epistatic and, thus, potentially decrease the efficacy of a combinatorial approach in either inhibiting VREfm or in delaying the onset of resistance. We show that resistance to DAP-FOS could be achieved by independent mutations to proteins responsible for cell wall synthesis for FOS and in altering membrane dynamics for DAP. However, we did not observe genetic drivers that exhibited substantial cross-drug epistasis that could undermine the DAP-FOS combination. Of interest was that FOS resistance in HOU503 was largely mediated by changes in phosphoenolpyruvate (PEP) flux as a result of mutations in pyruvate kinase (pyk). Increasing PEP flux could be a readily accessible mechanism for FOS resistance in many pathogens. Importantly, we show that HOU503 was able to develop DAP resistance through a variety of biochemical mechanisms and was able to employ different adaptive strategies. Finally, we showed that the addition of FOS can prolong the efficacy of DAP and slow down DAP resistance in vitro.


Assuntos
Antibacterianos , Daptomicina , Farmacorresistência Bacteriana , Enterococcus faecium , Fosfomicina , Antibacterianos/farmacologia , Daptomicina/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcus faecium/genética , Evolução Molecular , Fosfomicina/farmacologia , Testes de Sensibilidade Microbiana , Enterococos Resistentes à Vancomicina/genética
16.
ACS Infect Dis ; 8(1): 242-254, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34962128

RESUMO

In vitro experimental evolution of pathogens to antibiotics is commonly used for the identification of clinical biomarkers associated with antibiotic resistance. Microdroplet emulsions allow exquisite control of spatial structure, species complexity, and selection microenvironments for such studies. We investigated the use of monodisperse microdroplets in experimental evolution. Using Escherichia coli adaptation to doxycycline, we examined how changes in environmental conditions such as droplet size, starting lambda value, selection strength, and incubation method affected evolutionary outcomes. We also examined the extent to which emulsions could reveal potentially new evolutionary trajectories and dynamics associated with antimicrobial resistance. Interestingly, we identified both expected and unexpected evolutionary trajectories including large-scale chromosomal rearrangements and amplification that were not observed in suspension culture methods. As microdroplet emulsions are well-suited for automation and provide exceptional control of conditions, they can provide a high-throughput approach for biomarker identification as well as preclinical evaluation of lead compounds.


Assuntos
Infecções por Escherichia coli , Microfluídica , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/genética , Humanos
17.
PLoS Biol ; 19(5): e3001208, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038406

RESUMO

Normal cellular processes give rise to toxic metabolites that cells must mitigate. Formaldehyde is a universal stressor and potent metabolic toxin that is generated in organisms from bacteria to humans. Methylotrophic bacteria such as Methylorubrum extorquens face an acute challenge due to their production of formaldehyde as an obligate central intermediate of single-carbon metabolism. Mechanisms to sense and respond to formaldehyde were speculated to exist in methylotrophs for decades but had never been discovered. Here, we identify a member of the DUF336 domain family, named efgA for enhanced formaldehyde growth, that plays an important role in endogenous formaldehyde stress response in M. extorquens PA1 and is found almost exclusively in methylotrophic taxa. Our experimental analyses reveal that EfgA is a formaldehyde sensor that rapidly arrests growth in response to elevated levels of formaldehyde. Heterologous expression of EfgA in Escherichia coli increases formaldehyde resistance, indicating that its interaction partners are widespread and conserved. EfgA represents the first example of a formaldehyde stress response system that does not involve enzymatic detoxification. Thus, EfgA comprises a unique stress response mechanism in bacteria, whereby a single protein directly senses elevated levels of a toxic intracellular metabolite and safeguards cells from potential damage.


Assuntos
Formaldeído/metabolismo , Methylobacterium extorquens/metabolismo , Bactérias/metabolismo , Formaldeído/toxicidade , Methylobacterium/genética , Methylobacterium/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-33468468

RESUMO

LiaFSR signaling plays a major role in mediating daptomycin (DAP) resistance in enterococci, and the lack of a functional LiaFSR pathway leads to DAP hypersusceptibility. Using in vitro experimental evolution, we evaluated how Enterococcus faecium with a liaR response regulator gene deletion evolved DAP resistance. We found that knocking out LiaFSR signaling significantly delayed the onset of resistance, but resistance could emerge eventually through various alternate mechanisms that were influenced by the environment.


Assuntos
Daptomicina , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcus faecium/genética , Humanos , Testes de Sensibilidade Microbiana
20.
Proc Natl Acad Sci U S A ; 116(52): 26925-26932, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818937

RESUMO

Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host-pathogen interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA