Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674534

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) remains a prevalent zoonosis in the Republic of Tatarstan (RT), Russian Federation. Puumala orthohantavirus (PUUV), carried by bank voles (Myodes glareolus), is the principal zoonotic pathogen of HFRS in the RT. In this study, we sought to demonstrate the similarity of the PUUV genetic sequences detected in HFRS case patients and bank vole samples previously collected in some areas of the RT. Furthermore, we intended to identify the reassortant PUUV genomes and locate a potential site for their emergence. During 2019 outbreaks, the PUUV genome sequences of the S and M segments from 42 HFRS cases were analysed and compared with the corresponding sequences from bank voles previously trapped in the RT. Most of the PUUV strains from HFRS patients turned out to be closely related to those isolated from bank voles captured near the site of the human infection. We also found possible reassortant PUUV genomes in five patients while they were absent in bank voles. The location of the corresponding HFRS infection sites suggests that reassortant PUUV genomes could emerge in the bank voles that inhabit the forests on the watershed between the Kazanka River and Myosha River. These findings could facilitate the search for the naturally occurring reassortants of PUUV in bank vole populations.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Animais , Humanos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Virus Puumala/genética , Zoonoses , Florestas , Arvicolinae
2.
Trop Med Infect Dis ; 7(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324593

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease commonly diagnosed in the Volga Federal District (VFD). HFRS is caused by Puumala orthohantavirus (PUUV), and this virus is usually detected in bank voles as its natural host (Myodes glareolus). The PUUV genome is composed of the single-stranded, negative-sense RNA containing three segments. The goal of the current study is to identify genome variants of PUUV strains circulating in bank voles captured in the Udmurt Republic (UR) and Ulyanovsk region (ULR). The comparative and phylogenetic analysis of PUUV strains revealed that strains from Varaksino site UR are closely related to strains previously identified in the Pre-Kama area of the Republic of Tatarstan (RT), whilst strains from Kurlan and Mullovka sites ULR are similar to strains from the Trans-Kama area of the RT. It was also found that Barysh ULR strains form a separate distinct group phylogenetically equidistant from Varaksino and Kurlan−Mullovka groups. The identified groups of strains can be considered as separate sub-lineages in the PUUV Russian genetic lineage. In addition, the genomes of the strains from the UR, most likely, were formed as a result of reassortment.

3.
Pathogens ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34578200

RESUMO

In the European part of Russia, the highest number of hemorrhagic fever with renal syndrome (HFRS) cases are registered in the Volga Federal District (VFD), which includes the Republic of Tatarstan (RT). Puumala orthohantavirus (PUUV) is the main causative agent of HFRS identified in the RT. The goal of the current study is to analyze the genetic variations of the PUUV strains and possible presence of chimeric and reassortant variants among the PUUV strains circulating in bank vole populations in the Trans-Kama area of the RT. Complete S segment CDS as well as partial M and L segment coding nucleotide sequences were obtained from 40 PUUV-positive bank voles and used for the analysis. We found that all PUUV strains belonged to RUS genetic lineage and clustered in two subclades corresponding to the Western and Eastern Trans-Kama geographic areas. PUUV strains from Western Trans-Kama were related to the previously identified strain from Teteevo in the Pre-Kama area. It can be suggested that the PUUV strains were introduced to the Teteevo area as a result of the bank voles' migration from Western Trans-Kama. It also appears that physical obstacles, including rivers, could be overcome by migrating rodents under favorable circumstances. Based on results of the comparative and phylogenetic analyses, we propose that bank vole distribution in the Trans-Kama area occurred upstream along the river valleys, and that watersheds could act as barriers for migrations. As a result, the diverged PUUV strains could be formed in closely located populations. In times of extensive bank vole population growth, happening every 3-4 years, some regions of watersheds may become open for contact between individual rodents from neighboring populations, leading to an exchange of the genetic material between divergent PUUV strains.

4.
Viruses ; 13(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799742

RESUMO

The genus Flavivirus includes related, unclassified segmented flavi-like viruses, two segments of which have homology with flavivirus RNA-dependent RNA polymerase NS5 and RNA helicase-protease NS3. This group includes such viruses as Jingmen tick virus, Alongshan virus, Yanggou tick virus and others. We detected the Yanggou tick virus in Dermacentor nuttalli and Dermacentor marginatus ticks in two neighbouring regions of Russia. The virus prevalence ranged from 0.5% to 8.0%. We detected RNA of the Alongshan virus in 44 individuals or pools of various tick species in eight regions of Russia. The virus prevalence ranged from 0.6% to 7.8%. We demonstrated the successful replication of the Yanggou tick virus and Alongshan virus in IRE/CTVM19 and HAE/CTVM8 tick cell lines without a cytopathic effect. According to the phylogenetic analysis, we divided the Alongshan virus into two groups: an Ixodes persulcatus group and an Ixodes ricinus group. In addition, the I. persulcatus group can be divided into European and Asian subgroups. We found amino acid signatures specific to the I. ricinus and I. persulcatus groups and also distinguished between the European and Asian subgroups of the I. persulcatus group.


Assuntos
Dermacentor/virologia , Infecções por Flaviviridae/epidemiologia , Flaviviridae/genética , Ixodes/virologia , Proteínas não Estruturais Virais/genética , Substituição de Aminoácidos/genética , Animais , Vetores Aracnídeos/virologia , Linhagem Celular , Culicidae/virologia , Flaviviridae/isolamento & purificação , Filogenia , RNA Helicases/genética , RNA Viral/genética , Federação Russa/epidemiologia , Serina Endopeptidases/genética
5.
Infect Genet Evol ; 85: 104524, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32891876

RESUMO

Phlebovirus is an abundant and rather heterogeneous genus within the Phenuiviridae family (order Bunyavirales). The genus Phlebovirus is divided into two antigenic complexes, which also correspond to the main vector: sandflies/mosquitoes and ticks. Previously, only sandfly/mosquito-borne phleboviruses were associated with human disease, such as Rift Valley fever virus, Toscana virus, Sicilian and Naples Sandfly fever viruses and others. Until recently, tick-borne phleboviruses were not considered as human pathogens. After the discovery of severe fever with thrombocytopenia syndrome, interest to tick-borne phleboviruses has increased dramatically. In the last decade, many novel phleboviruses have been reported in different regions. Despite this, the diversity, ecology and pathogenicity of these viruses still remain obscure. The aim of this work was to study the diversity of phleboviruses in ticks collected in several regions of Russia. We used pan-phlebovirus RT-PCR assays based on multiple degenerate primers targeting the polymerase gene fragment. Arthropod specimens were collected from 2005 to 2018. A total of 5901 Ixodidae ticks combined into 1116 pools were screened. A total of 160 specific amplicons were produced. In three cases RT-PCR assays amplified two distinct viruses from same tick pools. Direct sequencing of amplicons and subsequent phylogenetic analysis revealed twelve representatives of divergent phlebovirus groups. Based on the distribution of pairwise nucleotide sequence identity values, a cut-off (88%) was suggested to distinguish tick-borne phleboviruses. According to this provisional criterion, two viruses found here could be termed novel, while ten viruses have been described in previous studies. Detected phleboviruses demonstrated almost perfect specificity to a tick species or, at least, a genus. The same pattern was observed for tick-borne phleboviruses found in different studies around the world. Viruses that grouped together on a phylogenetic tree and differed less than this sequence identity threshold suggested above were hosted by ticks from the same genus.


Assuntos
Febre por Flebótomos/genética , Phlebovirus/classificação , Phlebovirus/genética , Filogenia , Especificidade da Espécie , Doenças Transmitidas por Carrapatos/genética , Carrapatos/virologia , Animais , Variação Genética , Genótipo , Febre por Flebótomos/epidemiologia , Federação Russa , Análise de Sequência , Doenças Transmitidas por Carrapatos/epidemiologia
6.
J Immunol Res ; 2017: 3054217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109963

RESUMO

Allergic rhinitis (AR) is especially prevalent among the population of large cities. Immunologically, the airway epithelium is a region where the population of allergen-presenting cells concentrates. These cells actively express a group of receptors of the innate immune system. A specific cytokine profile is its representation. The study was aimed at evaluating the cytokine profile in patients with seasonal and perennial allergic rhinitis. The cytokine profile of nasal secretion and blood serum of 44 patients with AR was studied. 24 of them had seasonal allergic rhinitis (SAR), and 20 patients suffered from perennial allergic rhinitis (PAR). The patients' age ranged from 4 to 60 years. It was determined in our study that the activation of the GM-CSF production retained in patients with PAR sensitized to mite allergen components (Dermatophagoides pteronyssinus). There was a higher production profile of TNF-α and TSLP in nasal secretion in the patients with perennial allergic rhinitis and additional high sensitization to SEs. Sensitization to mold fungal allergen components significantly increases in patients with seasonal allergic rhinitis. They demonstrated high level of sensitization to the Aspergillus fumigatus component m3. Thus, along with other clinical trials, the study performed would clarify some aspects of molecular pathogenesis of human allergic rhinitis.


Assuntos
Aspergillus fumigatus/imunologia , Citocinas/sangue , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Rinite Alérgica/imunologia , Fator de Necrose Tumoral alfa/sangue , Adolescente , Adulto , Animais , Antígenos de Dermatophagoides/imunologia , Antígenos de Fungos/imunologia , Antígenos de Plantas/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pólen/imunologia , Pyroglyphidae/imunologia , Adulto Jovem , Linfopoietina do Estroma do Timo
7.
J Immunol Res ; 2017: 8493545, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28593178

RESUMO

A whole group of polymorphisms of genes involved in the formation of the epidermal barrier, immune responses, and their regulation is important in the formation of atopic phenotype. The purpose of the study is to determine the relationship of polymorphisms of genes of Toll-like receptors TLR2 and TLR4 with clinical and immunological parameters in atopic dermatitis patients in a "case-control" study. Polymorphisms of genes TLR2 (p.Arg753Gln) and TLR4 (Asp299Gly) were detected by PCR. Parameters of the state of innate and adaptive immunity were assessed by the level of local production of sIgA, cytokine profile of blood serum for IL-4, IL-10, and IFN-γ. Biological samples from 50 people with allergic pathology, aged 4.5 to 35 years, and 100 healthy individuals (controls) were analyzed. Observed dysregulation of cytokine production (IL-4, IL-10) in patients with heterozygous polymorphic genotypes probably reflects an imbalance of Th1/Th2/Th17 regulation of immune system response in these individuals.


Assuntos
Dermatite Atópica/genética , Pele/imunologia , Células Th17/imunologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Imunidade Adaptativa , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Imunidade Inata , Imunoglobulina A Secretora/metabolismo , Interferon gama/sangue , Interleucina-10/sangue , Interleucina-4/sangue , Masculino , Polimorfismo de Nucleotídeo Único , Pele/patologia , Equilíbrio Th1-Th2 , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA