RESUMO
Metal halide perovskites, particularly the quasi-two-dimensional perovskite subclass, have exhibited considerable potential for next-generation electroluminescent materials for lighting and display. Nevertheless, the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices. In this study, we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide. The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and, on the other hand, can screen the charged defects at the grain boundaries with potassium cations. This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films, leading to a significant enhancement of photoluminescence quantum yield to near-unity values (95%). Meanwhile, the potassium bromide treatment promoted the growth of homogeneous and smooth film, facilitating the charge carrier injection in the devices. Consequently, the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of ~ 21% and maximum luminance of ~ 60,000 cd m-2. This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
RESUMO
Herein, we synthesized two donor-acceptor (D-A) type small organic molecules with self-assembly properties, namely MPA-BT-BA and MPA-2FBT-BA, both containing a low acidity anchoring group, benzoic acid. After systematically investigation, it is found that, with the fluorination, the MPA-2FBT-BA demonstrates a lower highest occupied molecular orbital (HOMO) energy level, higher hole mobility, higher hydrophobicity and stronger interaction with the perovskite layer than that of MPA-BT-BA. As a result, the device based-on MPA-2FBT-BA displays a better crystallization and morphology of perovskite layer with larger grain size and less non-radiative recombination. Consequently, the device using MPA-2FBT-BA as hole transport material achieved the power conversion efficiency (PCE) of 20.32 % and remarkable stability. After being kept in an N2 glove box for 116â days, the unsealed PSCs' device retained 93 % of its initial PCE. Even exposed to air with a relative humidity range of 30±5 % for 43â days, its PCE remained above 91 % of its initial condition. This study highlights the vital importance of the fluorination strategy combined with a low acidity anchoring group in SAMs, offering a pathway to achieve efficient and stable PSCs.
RESUMO
All inorganic perovskite based on CsPbI2 Br has attracted significant attention due to its relatively thermal stable structure compare to its hybrid counterparts. With a wide bandgap of 1.9 eV and excellent light absorption capability, it has been extensively explored for applications in indoor photovoltaics and as a front absorber in tandem devices. However, the uncontrollable crystallization process during solvent evaporation and thermal annealing leads to both macroscopic defects like cracks and microscopic defects such as voids. In this study, a metastable adduct with lead (II) halides by incorporating 4-tert-butyl pyridine as a volatile Lewis base monodentate ligand in the precursor solution is formed. The strategic preferential decomposition of the adduct during the early-stage low-temperature annealing facilitated the desorption of lead (II) halides, inducing antisolvent-free heterogenous nucleation. This, in turn, promoted crystal growth during subsequent high-temperature annealing, resulting in dense films with low defect density. As a result, a maximum open-circuit voltage of 1.30 V is achieved with the champion power conversion efficiency of 16.5% in CsPbI2 Br-based perovskite solar cell. The work reveals a new mechanism of using Lewis acid-base adduct to obtain high quality perovskite films other than hindering crystallization in traditional way.
RESUMO
Organic solar cells (OSCs) based on polymer donor and non-fullerene acceptor achieve power conversion efficiency (PCE) more than 19% but their poor absorption below 550 nm restricts the harvesting of high-energy photons. In contrast, wide bandgap all-inorganic perovskites limit the absorption of low-energy photons and cause serious below bandgap loss. Therefore, a 2-terminal (2T) monolithic perovskite/organic tandem solar cell (TSC) incorporating wide bandgap CsPbI2 Br is demonstrated as front cell absorber and organic PM6:Y6 blend as rear cell absorber, to extend the absorption of OSCs into high-energy photon region. The perovskite sub-cell, featuring a sol-gel prepared ZnO/SnO2 bilayer electron transporting layer, renders a high open-circuit voltage (VOC ). The VOC is further enhanced by employing thermal annealing (TA)-free process in the fabrication of rear sub-cell, demonstrating a record high VOC of 2.116 V. The TA-free Ag/PFN-Br interface in organic sub-cell facilitates charge transport and restrains nonradiative recombination. Consequently, a remarkable PCE of 20.6% is achieved in monolithic 2T-TSCs configuration, which is higher than that of both reported single junction and tandem OSCs, demonstrating that tandem with wide bandgap all-inorganic perovskite is a promising strategy to improve the efficiency of OSCs.
RESUMO
Fine-tuning the alkyl chains and end groups of non-fused ring electron acceptors (NFREAs) plays vital roles in the promotion of charge transfer (CT) and power conversion efficiency (PCE). In this work, we developed a series of A-D-A'-D-A-type NFREAs, which possess the same terminals (A), the cyclopentadithiophene unit (D), and the thieno[3,4-c]pyrrole-4,6-dione (A'). Despite the subtle difference in side chains and halogenated end groups, the six acceptors exhibit a considerable difference in the efficiency and device stability of the organic solar cells (OSCs). Among the molecules, chlorinated NFREAs show a broader light absorption than the fluorinated ones do. Compared with C8C8-4F (1-octylnonyl and fluorination) and C6C4-4Cl (2-butyloctyl and chlorination), C8C8-4Cl (1-octylnonyl and chlorination) exhibits a lower highest occupied molecular orbital level, higher electron mobility, and denser molecular packing. The OSCs based on PM6:C8C8-4Cl yield the best PCE of 14.11%, which is attributed to the faster charge transport, high miscibility, and preferable morphology. Moreover, the PM6:C8C8-4Cl devices retain 91.1% of the initial PCE after being placed in air with 67% relative humidity for 50 days. This work shows that the simultaneous optimization of side chains and end groups facilitates the CT and improves the stability in the OSCs, offering a novel view into the molecular design of A-D-A'-D-A-type NFREAs.
RESUMO
A new dopant-free hole transporting material (HTM) 4',4â´,4â´'',4â´''''-(adamantane-1,3,5,7-tetrayl)tetrakis(N,N-bis(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine) (Ad-Ph-OMeTAD) (named FDY for short), which consists of a nonconjugated 3D bulky caged adamantane (Ad) as the core, triphenyl amines as side arms, and phenyl units as a linking bridge, is synthesized and applied in an inverted planar perovskite solar cell (PSC). As a result, the champion device with FDY as HTM yields an impressive power of conversion efficiency (PCE) of 18.69%, with JSC = 22.42 mA cm-2, VOC = 1.05 V, and FF = 79.31% under standard AM 1.5G illumination, which is ca. 20% higher than that of the device based on PEDOT:PSS (only 15.41%). Notably, the stability of PSC based on FDY is much better than that of devices based on PEDOT:PSS, and the corresponding devices retain over 90% of their initial PCEs after storing for 60 days in a nitrogen glove box without any encapsulation. Even when stored in an open air condition with 50-60% relative humidity for 188 h, the retained PCE is still over 81% of its initial one. All these results demonstrate that the new design strategy by combing the bulky and nonconjugated (aliphatic) adamantane unit as the core and triphenyl amines as side arms can efficiently develop highly efficient HTMs for PSCs, which is different from the traditional way based on conjugated backbones, and it may open a new way for scientists to design small-molecule HTMs for PSCs.
RESUMO
Teacher self-efficacy may reduce the likelihood of burnout through preventing the occurrence of work stress. The study inquiries the relationship between teaching efficacy and burnout, focus on mediation of self-esteem. A sample of 329 Chinese special teachers who teach in the special schools in western China was measured with the Maslach Burnout Inventory, the Rosenberg self-esteem scale and the Self-efficacy scale. Results indicated that emotional exhaustion and depersonalization of Chinese special teachers are at a medium level and personal accomplishment are at a low level. The mediation analysis shows that under the education background of special education, self-esteem plays partial mediation role in general teaching efficacy or personal teaching efficacy and job burnout of special education teachers.
RESUMO
Organic-inorganic halide perovskites have demonstrated significant light detection potential, with a performance comparable to that of commercially available photodetectors. In this study, a general design guideline, which is applicable to both inverted and regular structures, is proposed for high-performance perovskite photodiodes through an interfacial built-in electric field (E) for efficient carrier separation and transport. The interfacial E generated at the interface between the active and charge transport layers far from the incident light is critical for effective charge carrier collection. The interfacial E can be modulated by unintentional doping of the perovskite, whose doping type and density can be easily controlled by the post-annealing time and temperature. Employing the proposed design guideline, the inverted and regular perovskite photodiodes exhibit the external quantum efficiency of 83.51% and 76.5% and responsivities of 0.37 and 0.34 A W-1 , respectively. In the self-powered mode, the dark currents reach 7.95 × 10-11 and 1.47 × 10-8 A cm-2 , providing high detectivities of 7.34 × 1013 and 4.96 × 1012 Jones, for inverted and regular structures, respectively, and a long-term stability of at least 1600 h. This optimization strategy is compatible with existing materials and device structures and hence leads to substantial potential applications in perovskite-based optoelectronic devices.
RESUMO
Advances in two-dimensional semiconducting thin films enable the realization of wearable electronic devices in the form factor of flexible substrate/thin films that can be seamlessly adapted in our daily lives. For wearable gas sensing, two-dimensional materials, such as SnSe2, are particularly favorable because of their high surface-to-volume ratio and strong adsorption of gas molecules. Chemical vapor deposition and liquid/mechanical exfoliation are the widely applied techniques to obtain SnSe2 thin films. However, these methods normally result in non-uniform and isolated flakes which cannot apply to the practical industrial-scale wearable electronic devices. Here, we demonstrate large-scale (10 cm × 10 cm), uniform, and self-standing SnSe2 nanoplate arrays by co-evaporation process on flexible polyimide substrates. Both structural and morphological properties of the resulting SnSe2 nanoplates are systematically investigated. Particularly, the single-crystalline SnSe2 nanoplates are achieved. Furthermore, we explore the application of the polyimide/SnSe2 nanoplate arrays as wearable gas sensors for detecting methane. The wearable gas sensors show high sensitivity, fast response and recovery, and good uniformity. Our approach not only provides an efficient technique to obtain large-area, uniform and high-quality single-crystalline SnSe2 nanoplates, but also impacts on the future developments of layered metal dichalcogenides-based wearable devices.