Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1177393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180271

RESUMO

Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4), presents the foremost menace to the global banana production. Extensive efforts have been made to search for efficient biological control agents for disease management. Our previous study showed that Streptomyces sp. XY006 exhibited a strong inhibitory activity against several phytopathogenic fungi, including F. oxysporum. Here, the corresponding antifungal metabolites were purified and determined to be two cyclic lipopeptide homologs, lipopeptin A and lipopeptin B. Combined treatment with lipopeptin complex antagonized Foc TR4 by inhibiting mycelial growth and conidial sporulation, suppressing the synthesis of ergosterol and fatty acids and lowering the production of fusaric acid. Electron microscopy observation showed that lipopeptide treatment induced a severe disruption of the plasma membrane, leading to cell leakage. Lipopeptin A displayed a more pronounced antifungal activity against Foc TR4 than lipopeptin B. In pot experiments, strain XY006 successfully colonized banana plantlets and suppressed the incidence of FWB, with a biocontrol efficacy of up to 87.7%. Additionally, XY006 fermentation culture application improved plant growth parameters and induced peroxidase activity in treated plantlets, suggesting a possible role in induced resistance. Our findings highlight the potential of strain XY006 as a biological agent for FWB, and further research is needed to enhance its efficacy and mode of action in planta.

2.
Food Res Int ; 128: 108778, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955752

RESUMO

Oolong tea is a partially fermented tea with distinct tastes and aromas. However, the dynamic biochemical changes during oolong tea processing are not well understood. In this study, we performed metabolomics-based profiling of non-volatile and volatile constituents of oolong tea during its entire processing procedures by UPLC-QTOF MS and GC-TOF MS. A step-wise change of tea metabolome was observed, where catechins and oxidized products, flavonol glycosides and amino acids were identified as key discriminate metabolites. The ZuoQing process comprising alternating YaoQing and TanQing steps was deemed most critical for key metabolic transformation. Extensive YaoQing facilitated the oxidative polymerizations of catechins into theaflavins and proanthocyanidins, lowering the astringency in raw tea. Two direct terpene precursors farnesyl pyrophosphate and geranyl pyrophosphate accumulated to high levels during ZuoQing, which provided more substrates for the synthesis of downstream volatile terpenes. Moreover, both YaoQing and prolonged TanQing facilitated the formation of terpenes as well as fatty acid and benzenoid-derived volatiles, which contributed to the fruity and floral fragrances in oolong tea. The fixation step not only converted amino acids into aromatic compounds, but also lowered the amounts of flavonol glycosides, potentially improving the flavor quality of the final tea product. This study provides a comprehensive profile of flavor-related metabolic changes during oolong tea processing and will contribute to better quality control and flavor improvement of oolong tea.


Assuntos
Camellia sinensis/química , Metabolômica/métodos , Odorantes/análise , Chá/química , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa , Cromatografia Líquida , Manipulação de Alimentos , Espectrometria de Massas/métodos
3.
Front Plant Sci ; 10: 1705, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010173

RESUMO

Tea green leafhopper [Empoasca (Matsumurasca) onukii Matsuda] is one of the most devastating pests of tea plants (Camellia sinensis), greatly impacting tea yield and quality. A thorough understanding of the interactions between the tea green leafhopper and the tea plant would facilitate a better pest management. To gain more insights into the molecular and biochemical mechanisms behind their interactions, a combined analysis of the global transcriptome and metabolome reconfiguration of the tea plant challenged with tea green leafhoppers was performed for the first time, complemented with phytohormone analysis. Non-targeted metabolomics analysis by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS), together with quantifications by ultra-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-QqQ MS), revealed a marked accumulation of various flavonoid compounds and glycosidically bound volatiles but a great reduction in the level of amino acids and glutathione upon leaf herbivory. RNA-Seq data analysis showed a clear modulation of processes related to plant defense. Genes pertaining to the biosynthesis of phenylpropanoids and flavonoids, plant-pathogen interactions, and the biosynthesis of cuticle wax were significantly up-regulated. In particular, the transcript level for a CER1 homolog involved in cuticular wax alkane formation was most drastically elevated and an increase in C29 alkane levels in tea leaf waxes was observed. The tea green leafhopper attack triggered a significant increase in salicylic acid (SA) and a minor increase in jasmonic acid (JA) in infested tea leaves. Moreover, transcription factors (TFs) constitute a large portion of differentially expressed genes, with several TFs families likely involved in SA and JA signaling being significantly induced by tea green leafhopper feeding. This study presents a valuable resource for uncovering insect-induced genes and metabolites, which can potentially be used to enhance insect resistance in tea plants.

4.
Biomed Res Int ; 2018: 1470305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519568

RESUMO

Endophytic actinomycetes are a promising source of novel metabolites with diverse biological activities. Tea plants (Camellia sinensis) produce arsenals of phytochemicals, which are linked to a number of medicinal and nutritional properties. However, a systematic investigation into the abundance and diversity of cultivated actinomycetes residing in tea plants has not been performed. In this study, a total of 46 actinobacteria were recovered from leaf, stem, and root samples of 15 tea cultivars collected in Fujian province, China. Their abundance and diversity were shown to be influenced by both the genotypes and tissue types of tea plants. Based on 16S RNA sequence analysis, these isolates were taxonomically grouped into 11 families and 13 genera, including Streptomyces, Actinomadura, Kribbella, Nocardia, Kytococcus, Leifsonia, Microbacterium, Micromonospora, Mobilicoccus, Mycobacterium, Nocardiopsis, Piscicoccus, and Pseudonocardia. The genus Streptomyces was most prevalent whereas rare genera, Mobilicoccus and Piscicoccus, were reported for the first time to occur as plant endophytes. PCR screening of polyketide synthase genes (PKS-I and PKS-II) and nonribosomal peptide synthetase genes (NRPS), along with antimicrobial assays against a set of bacterial and fungal pathogens, showed that endophytic actinomycetes associated with tea plants have a high potential for producing antimicrobial metabolites. Furthermore, indole acetic acid (IAA) production and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activities were recorded in 93.5% and 21.7% of all isolates, respectively. Overall, these results indicate that endophytic actinomycetes from tea plants represent a valuable source of bioactive metabolites with antibacterial, antifungal, and plant-growth-promoting properties.


Assuntos
Actinobacteria/isolamento & purificação , Antibacterianos/isolamento & purificação , Endófitos/isolamento & purificação , Chá/microbiologia , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/genética , Aminoácidos Cíclicos/química , Antibacterianos/química , Antibacterianos/farmacologia , China , Endófitos/química , Ácidos Indolacéticos/química , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , RNA Ribossômico 16S/genética
5.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912322

RESUMO

Streptomyces sp. XY006 is an endophytic bacterium isolated from the young leaf material of the tea plant (Camellia sinensis). The draft genome consists of 8.2 Mb and encodes 7,415 putative open reading frames. This strain is found to contain a high capacity for the production of natural products.

6.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912334

RESUMO

Paenibacillus sp. XY044 is an endophytic bacterium isolated from the stem of a tea plant (Camellia sinensis cv. Maoxie). Here, we present the draft genome sequence of XY044, which includes genes encoding features related to plant growth promotion and biocontrol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA