Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(4): 699-708, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718586

RESUMO

The neurotoxic effects of sevoflurane anesthesia on the immature nervous system have aroused public concern, but the specific effects and mechanism remain poorly understood. Pyroptosis caused by the activation of the NLRP3 inflammasome is pivotal for cell survival and acts as a key player in cognitive impairment. This study was carried out to determine the critical role of the NLRP3 inflammasome and high-mobility group box 1 (HMGB1) in sevoflurane-induced cognitive impairment. On gestational day 20 (G20), 3% sevoflurane was administered for 4 h to pregnant rats. The hippocampus and cerebral cortex of the offspring were harvested at postnatal day 1 (P1) for Western blotting and immunofluorescence staining. Pregnant rat sevoflurane exposure increased the protein levels of NLRP3, ASC, cleaved-caspase 1 (p20), mature-IL-1ß (m-IL-1ß), and HMGB1 in the cerebral cortex and hippocampus of offspring rats. More microglial cells of offspring were also observed after sevoflurane anesthesia. The Morris water maze (MWM) test was implemented to evaluate cognitive function from postnatal day 30 (P30) to postnatal 35 (P35) of offspring. The sevoflurane-treated offspring took longer than the control rats to find the MWM platform during the learning phase. Furthermore, they had a longer travel distance and less time in the target quadrant than the control rats in the probe trial. Maternal intraperitoneal injection of glycyrrhizin (an inhibitor of HMGB1) attenuated the sevoflurane-induced microglia and NLRP3/ASC inflammasome activation and cognitive impairment of offspring. Simultaneously, the sevoflurane-induced increase in Toll-like receptors (TLR4) and nuclear factor-κB (NF-κB) was significantly reduced by glycyrrhizin. We concluded that the HMGB1 inhibitor may repress the sevoflurane-induced activation of the NLRP3/ASC inflammasome and cognitive dysfunction and that TLR4/NF-κB signaling maybe the key pathway, at least in part.


Assuntos
Proteína HMGB1 , Inflamassomos , Animais , Feminino , Gravidez , Ratos , Ácido Glicirrízico , Proteína HMGB1/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sevoflurano , Receptor 4 Toll-Like/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Aprendizagem , Memória
2.
Front Med ; 16(2): 240-250, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35416629

RESUMO

The continuing discoveries of novel classes of RNA modifications in various organisms have raised the need for improving sensitive, convenient, and reliable methods for quantifying RNA modifications. In particular, a subset of small RNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), are modified at their 3'-terminal nucleotides via 2'-O-methylation. However, quantifying the levels of these small RNAs is difficult because 2'-O-methylation at the RNA 3'-terminus inhibits the activity of polyadenylate polymerase and T4 RNA ligase. These two enzymes are indispensable for RNA labeling or ligation in conventional miRNA quantification assays. In this study, we profiled 3'-terminal 2'-O-methyl plant miRNAs in the livers of rice-fed mice by oxidative deep sequencing and detected increasing amounts of plant miRNAs with prolonged oxidation treatment. We further compared the efficiency of stem-loop and poly(A)-tailed RT-qPCR in quantifying plant miRNAs in animal tissues and identified stem-loop RT-qPCR as the only suitable approach. Likewise, stem-loop RT-qPCR was superior to poly(A)-tailed RT-qPCR in quantifying 3'-terminal 2'-O-methyl piRNAs in human seminal plasma. In summary, this study established a standard procedure for quantifying the levels of 3'-terminal 2'-O-methyl miRNAs in plants and piRNAs. Accurate measurement of the 3'-terminal 2'-O-methylation of small RNAs has profound implications for understanding their pathophysiologic roles in biological systems.


Assuntos
MicroRNAs , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metilação , Camundongos , MicroRNAs/genética , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
3.
Brain ; 144(11): 3421-3435, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34918046

RESUMO

Huntington's disease is an autosomal-dominant neurodegenerative disease caused by CAG expansion in exon 1 of the huntingtin (HTT) gene. Since mutant huntingtin (mHTT) protein is the root cause of Huntington's disease, oligonucleotide-based therapeutic approaches using small interfering RNAs (siRNAs) and antisense oligonucleotides designed to specifically silence mHTT may be novel therapeutic strategies for Huntington's disease. Unfortunately, the lack of an effective in vivo delivery system remains a major obstacle to realizing the full potential of oligonucleotide therapeutics, especially regarding the delivery of oligonucleotides to the cortex and striatum, the most severely affected brain regions in Huntington's disease. In this study, we present a synthetic biology strategy that integrates the naturally existing exosome-circulating system with artificial genetic circuits for self-assembly and delivery of mHTT-silencing siRNA to the cortex and striatum. We designed a cytomegalovirus promoter-directed genetic circuit encoding both a neuron-targeting rabies virus glycoprotein tag and an mHTT siRNA. After being taken up by mouse livers after intravenous injection, this circuit was able to reprogramme hepatocytes to transcribe and self-assemble mHTT siRNA into rabies virus glycoprotein-tagged exosomes. The mHTT siRNA was further delivered through the exosome-circulating system and guided by a rabies virus glycoprotein tag to the cortex and striatum. Consequently, in three mouse models of Huntington's disease treated with this circuit, the levels of mHTT protein and toxic aggregates were successfully reduced in the cortex and striatum, therefore ameliorating behavioural deficits and striatal and cortical neuropathologies. Overall, our findings establish a convenient, effective and safe strategy for self-assembly of siRNAs in vivo that may provide a significant therapeutic benefit for Huntington's disease.


Assuntos
Engenharia Genética/métodos , Terapia Genética/métodos , Proteína Huntingtina , Doença de Huntington , RNA Interferente Pequeno , Animais , Exossomos/metabolismo , Fígado/metabolismo , Camundongos , RNA Interferente Pequeno/farmacologia , Transfecção
4.
Brain Res Bull ; 161: 136-146, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32433937

RESUMO

Excitotoxicity is one of the main mechanisms related to hypoxia/reoxygenation (H/R) injury. Excitatory amino acid transporter (EAAT)2 mainly distributes on astrocytes and plays an important role on glutamate reuptake and glutamate homeostasis. Midazolam has a neuroprotective effect in some neuropathological conditions. The present study aimed to detect the role of EAAT2 in the neuroprotective effect of midazolam in neonatal rat brain subjected to H/R. Pretreatment with midazolam reversed H/R-induced apoptosis and downregulation of EAAT2 mRNA and protein expression in the hippocampus. Pretreatment with dihydrokainic acid (a selective inhibitor of EAAT2) exacerbated apoptosis, and thus inhibited the neuroprotective effect of midazolam against H/R injury. We demonstrated for the first time that dysregulation of EAAT2 expression may be related to the neural injury induced by H/R in rat pups, and pretreatment with midazolam attenuated apoptosis and improved learning and memory partly due to regulating EAAT2 expression.


Assuntos
Lesões Encefálicas/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Hipóxia Encefálica/metabolismo , Midazolam/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Animais Recém-Nascidos , Lesões Encefálicas/prevenção & controle , Relação Dose-Resposta a Droga , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Hipnóticos e Sedativos/administração & dosagem , Hipóxia Encefálica/prevenção & controle , Ratos , Ratos Sprague-Dawley
5.
Life Sci ; 242: 117151, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843526

RESUMO

AIMS: Anaesthesia-related neurotoxicity in the developing brain is a controversial issue that has recently attracted much attention. Hemin plays a protective role in hypoxic and ischemic brain damage; however, its effects on sevoflurane-induced neurotoxicity remain unclear. Our aim was to investigate the mechanisms of sevoflurane neurotoxicity and potential neuroprotective roles of hemin upon sevoflurane exposure. MAIN METHODS: Hippocampi were harvested 18 h after sevoflurane exposure. Haem oxygenase 1 (HMOX1), superoxide dismutase 2 (SOD2), discs large MAGUK scaffold protein 4 (DLG4), phosphorylated Akt, Akt, cleaved caspase 3, and neuroglobin were detected by western blotting. A water maze test was used to assess learning and memory ability in P30 rats. KEY FINDINGS: Sevoflurane inhalation increased cleaved caspase 3 levels. Hemin treatment enhanced the antioxidant defence response, protecting rats from oxidative stress injury. Hemin plays its neuroprotective role via phosphoinositide 3-kinase (PI3K)/Akt signalling. A single inhalation of sevoflurane did not affect DLG4 expression, while hemin treatment did. Platform crossing increased in rats treated with hemin as well, which may be related to increased DLG4. Neuroglobin expression was not affected, suggesting that it may act upstream of PI3K/Akt signalling. SIGNIFICANCE: Our study demonstrates that hemin plays a protective role in anaesthesia-induced neurotoxicity by both inhibiting apoptosis via the PI3K/Akt pathway and increasing the expression of antioxidant enzymes, reducing oxidative damage. The results provide mechanistic insight into the effects of sevoflurane anaesthesia on the developing brain and suggest that hemin could help avoid these effects.


Assuntos
Anestésicos Inalatórios/toxicidade , Encéfalo/efeitos dos fármacos , Hemina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sevoflurano/toxicidade , Transdução de Sinais/efeitos dos fármacos , Administração por Inalação , Animais , Animais Recém-Nascidos , Western Blotting , Caspase 3/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Hipocampo/química , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Aprendizagem em Labirinto/efeitos dos fármacos , Neuroglobina/metabolismo , Ratos , Ratos Sprague-Dawley , Sevoflurano/antagonistas & inibidores , Superóxido Dismutase/metabolismo
6.
Int J Dev Neurosci ; 76: 17-24, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31173822

RESUMO

As a general anesthesia drug, sevoflurane has been found to be potentially neurotoxic to the developing brain. Neuroglobin (Ngb) is a novel oxygen-carrying globulin that has been demonstrated to have neuroprotective effects in a variety of central nervous system disorders. However, it is unclear whether Ngb has a protective effect on nerve damage caused by sevoflurane. Therefore, this study was designed to investigate the effect and related mechanisms of Ngb on neural injury induced by sevoflurane. Pregnant rats on gestational day 20 (G20) were exposed to 3.5% sevoflurane for two hours, which led to an increase of Ngb on the 0-1st day after birth and decreased significantly on the 3rd day, while Cytochrome c increased from the 1 st day until the 7th day of offspring rats. Meanwhile, sevoflurane reduced Bcl-2 and Hif-1αand increased Bax and cleaved-caspase 3 in the third day after birth. Hemin inhibits endogenous apoptosis by increasing Ngb and Hif-1α. And increased Ngb improved the damage of long-term learning and memory induced by sevoflurane and increased the number of neurons in the hippocampus. We concluded that Ngb can improve the neuronal injury induced by sevoflurane exposure by inhibiting apoptosis and increasing the number of neurons. And this protective effect of Ngb may be related to Hif-1α signaling pathway. This finding may provide a novel therapeutic approach for sevoflurane -induced nerve damage.


Assuntos
Anestésicos Inalatórios/toxicidade , Apoptose/efeitos dos fármacos , Neuroglobina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Sevoflurano/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Química Encefálica/efeitos dos fármacos , Citocromos c/metabolismo , Feminino , Hemina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Neuroglobina/biossíntese , Gravidez , Ratos , Transdução de Sinais/efeitos dos fármacos
7.
Front Neurosci ; 13: 537, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191229

RESUMO

BACKGROUND: Many studies have reported that sevoflurane can increase neuronal apoptosis and result in cognitive deficits in rodents. Although neurotoxicity may be associated with mitochondrial dysfunction and oxidative stress, the exact mechanism remains unclear. In order to evaluate potential treatment therapies, we studied the effects of hemin on neurotoxicity of neonatal rat sevoflurane exposure. METHODS: Postnatal day (P) seven rats were assigned randomly to four groups; (1) group C: non-anesthesia, (2) group H: intraperitoneal hemin (50 mg kg-1) treatment on days 5 and 6, (3) group S: 3% sevoflurane exposure for 4 h, and (4) group SH: hemin treatment + sevoflurane exposure. The expression of neuroglobin in neonatal hippocampus was determined by western blot and immunohistochemistry. Neuroglobin was localized by immunofluorescence. Western blot for the expression of cleaved caspase-3 and TUNEL were used to detect neonatal hippocampal apoptosis, and cytochrome c was used to evaluate mitochondrial function. Drp-1 and Mfn-2 immunoblotting were used to assess mitochondrial dynamics. The Morris water maze test was performed to detect cognitive function in the rats on P30. RESULTS: Exposure to sevoflurane increased the expression of cleaved caspase-3, cytochrome c, and Drp1 in the neonatal hippocampus and resulted in cognitive deficiency but decreased expression of Mfn2. Hemin reduced apoptosis, improved mitochondrial dynamics and ameliorated the cognitive impairment caused by sevoflurane exposure. CONCLUSION: Hemin reduced neuronal apoptosis, improved mitochondrial dynamics and protected against cognitive deficits induced by sevoflurane in neonatal rats. This neuroprotective effect may be achieved by increasing the expression of neuroglobin.

8.
Drug Des Devel Ther ; 13: 153-160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30613136

RESUMO

BACKGROUND: Considerable evidences support the finding that the anesthesia reagent isoflurane increases neuronal cell death in young rats. Recent studies have shown that dexmedetomidine can reduce isoflurane-induced neuronal injury, but the mechanism remains unclear. We investigated whether isoflurane cause neurotoxicity to the central nervous system by regulating the N-methyl-D-aspartate receptor (NMDAR) and excitatory amino acid transporter1 (EAAT1) in young rats. Furthermore, we examined if dexmedetomidine could decrease isoflurane-induced neurotoxicity. METHODS: Neonatal rats (postnatal day 7, n=144) were randomly divided into four groups of 36 animals each: control (saline injection without isoflurane); isoflurane (2% for 4 h); isoflurane + single dose of dexmedetomidine (75 µg/kg, 20 min before the start of 2% isoflurane for 4 h); and isoflurane + dual doses of dexmedetomidine (25 µg/kg, 20 min before and 2 h after start of isoflurane at 2% for 4 h). Six neonates from each group were euthanatized at 2 h, 12 h, 24 h, 3 days, 7 days and 28 days post-anesthesia. Hippocampi were collected and processed for protein extraction. Expression levels of the NMDAR subunits NR2A and NR2B, EAAT1 and caspase-3 were measured by western blot analysis. RESULTS: Protein levels of NR2A, EAAT1 and caspase-3 were significantly increased in hippocampus of the isoflurane group from 2 h to 3 days, while NR2B levels were decreased. However, the -induced increase in NR2A, EAAT1 and caspase-3 and the decrease in NR2B in isoflurane-exposed rats were ameliorated in the rats treated with single or dual doses of dexmedetomidine. Isoflurane-induced neuronal damage in neonatal rats is due in part to the increase in NR2A and EAAT1 and the decrease in NR2B in the hippocampus. CONCLUSION: Dexmedetomidine protects the brain against the use of isoflurane through the regulation of NR2A, NR2B and EAAT1. However, using the same amount of dexmedetomidine, the trend of protection is basically the same.


Assuntos
Dexmedetomidina/farmacologia , Ácido Glutâmico/metabolismo , Isoflurano/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Dexmedetomidina/administração & dosagem , Injeções Intraperitoneais , Isoflurano/farmacologia , Masculino , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley
9.
Drug Des Devel Ther ; 12: 3617-3624, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464393

RESUMO

BACKGROUND: The effect of sevoflurane on the nervous system is controversial. As an adjuvant anesthetic, dexmedetomidine has a protective role in various nerve-injury diseases. We investigated the effect of dexmedetomidine on injury to the developing brain induced by sevoflurane anesthesia, and if autophagy and mitochondrial damage are involved in the neuroprotective effects of dexmedetomidine. METHODS: Pregnant rats on gestational day 20 were exposed to 3% sevoflurane for 4 hours. Saline and dexmedetomidine were injected intraperitoneally 15 minutes before exposure to sevoflurane or control gas. Bilateral hippocampi were harvested on postnatal day 1. Hippocampal morphology was observed by Nissl staining and expression of the microtubule-related protein LC3I/II, p62, Drp1, Bax, and Bcl2 were evaluated by Western blotting and immunohistochemistry. RESULTS: Nissl staining showed that sevoflurane anesthesia during the third trimester caused neuronal damage to the hippocampi of rat pups. Western blotting and immunohistochemistry showed that pregnant rats exposed to sevoflurane during the third trimester led to pups having increased expression of LC3 and p62, suggesting that sevoflurane blocked autophagic flow in the hippocampus. Expression of Drp1 and Bax was increased after sevoflurane exposure, whereas Bcl2 expression was downregulated. All these effects were alleviated by pretreatment with dexmedetomidine. CONCLUSION: Sevoflurane exposure during the third trimester caused neurological injury to rat pups. Autophagy and abnormalities in mitochondrial dynamics were involved in this neurotoxic process and were antagonized by dexmedetomidine.


Assuntos
Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Dexmedetomidina/farmacologia , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/patologia , Dexmedetomidina/administração & dosagem , Dinaminas/metabolismo , Feminino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Gravidez , Ratos , Ratos Sprague-Dawley , Sevoflurano
10.
Biomed Pharmacother ; 108: 1469-1476, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372849

RESUMO

As one of the most popular anesthetics, sevoflurane is widely used in pediatric anesthesia. Unfortunately, an increasing number of studies have demonstrated that sevoflurane has potential neurotoxic effects on the developing brain and cognition, even in adolescence. Connexin 43 (Cx43) has been documented to contribute to cognitive dysfunction. The present study hypothesized that Cx43 may participate in sevoflurane-induced neuroinjury and investigated the underlying mechanisms in young Sprague Dawley (SD) rats. Seven-day-old SD rats (P7) were exposed to 3% sevoflurane for 4 h. The levels of Cx43,mitogen-activated protein kinase (MAPK) signaling pathway components(including total and phosphorylated p38, extracellular signal-regulated kinase (ERK), and c-Jun n-terminal kinase (JNK) and activator protein 1(AP-1) transcription factors (including total and phosphorylated c-Fos, and c-Jun) were assessed by Western blot analysis. Neuronal apoptosis was detected using immunohistochemistry (IHC). The Morris water maze (MWM) was performed to evaluate cognitive function from P28 to P33. The results showed that anesthesia with 3% sevoflurane for 4 h increased Cx43 levels in the rat hippocampus from 6 h to 3 d, and compared with sevoflurane exposure in the control group rats, exposure in P7 SD rats also increased the ratios of phosphorylated JNK to JNK and, phosphorylated c-Jun to c-Jun in the hippocampus from 6 h to 3 d. All these effects could be alleviated by pretreatment with the JNK inhibitor SP600125 (10 mg/kg). Neuroapoptosis was similarly increased from 6 h to 1 d after inhaled sevoflurane exposure. Finally, the MWM indicated that sevoflurane could increase the escape latency and, decrease the number of platform crossings from P28 to P33. Overall, our findings suggested that sevoflurane increased Cx43 expression and induced to apoptosis by activating the JNK/c-Jun signaling pathway in the hippocampus of P7 rats. This finding may reveal a new strategy for preventing sevoflurane-induced neuronal dysfunction.


Assuntos
Conexina 43/biossíntese , Hipocampo/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Sistema de Sinalização das MAP Quinases/fisiologia , Sevoflurano/toxicidade , Fator de Transcrição AP-1/biossíntese , Animais , Animais Recém-Nascidos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Inibidores da Agregação Plaquetária/toxicidade , Ratos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
11.
Front Neurosci ; 12: 964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618586

RESUMO

Numerous studies have demonstrated that general anesthetics might damage the nervous system, thus, the effect of general anesthetics on the developing brain has attracted much attention. Dexmedetomidine (Dex) exhibits a certain neuroprotective effect, but the mechanism is obscure. In our study, pregnant rats on gestational day 20 (G20) were exposed to 3% sevoflurane for 2 h or 4 h, and the neuronal apoptosis in hippocampal CA1 region of the offspring rats was detected by quantification of TUNEL positive cells and cleaved-caspase3 (cl-caspase3). Different doses of Dex were intraperitoneally injected before sevoflurane anesthesia; then, the expression of apoptotic-related proteins including BCL-2, BAX and cl-caspase3 as well as amyloid precursor protein (APP, a marker of axonal injury), p-CRMP-2 and CRMP-2 were measured at postnatal days 0, 1and 3 (P0, P1, and P3, respectively). As an antagonist of the bone morphgenetic proteins (BMP) receptor, DMH1 was co-administered with sevoflurane plus Dex to investigate whether BMP/SMAD is associated with the neuroprotective effects of Dex. The results showed that prenatal sevoflurane anesthesia for 4 h activated apoptosis transiently, as manifested by the caspase3 activity peaked on P1 and disappeared on P3. In addition, the expressions of APP and p-CRMP-2/CRMP-2 in postnatal rat hippocampus were significantly increased, which revealed that prenatal sevoflurane anesthesia caused axonal injury of offspring. The long-term learning and memory ability of offspring rats was also impaired after prenatal sevoflurane anesthesia. These damaging effects of sevoflurane could be mitigated by Dex and DMH1 reversed the neuroprotective effect of Dex. Our results indicated that prenatal exposure to 3% sevoflurane for 4 h increased apoptosis and axonal injury, even caused long-term learning and memory dysfunction in the offspring rats. Dex dose-dependently reduced sevoflurane- anesthesia-induced the neurotoxicity by activating the BMP/SMAD signaling pathway.

12.
RSC Adv ; 8(24): 13284-13291, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542524

RESUMO

Hydrogels, one of the most important bioinspired materials, are receiving increasing attention because of their potential applications as scaffolds for artificial tissue engineering and vehicles for drug delivery, etc. However, these applications are always severely limited by their microstructure and mechanical behavior. Here we report the fabrication of a tough polyvinyl alcohol/graphene oxide (PVA/GO) nanocomposite hydrogel through a simple and effective directional freezing-thawing (DFT) technique. The resulting hydrogels show well-developed anisotropic microstructure and excellent mechanical properties with the assistance of DFT method and lamellar graphene. The hydrogels with anisotropic porous structures that consisted of micro-sized fibers and lamellas exhibit high tensile strengths, up to 1.85 MPa with a water content of 90%. More interestingly, the PVA/GO composite hydrogels exhibit the better thermostability, which can maintain the original shape when swollen in hot water (65 °C). In addition, the hydrogels with biocompatibility show good drug release efficiency due to the unique hierarchical structure. The successful synthesis of such hydrogel materials might pave the way to explore applications in biomedical and soft robotics fields.

13.
Pak J Pharm Sci ; 28(2 Suppl): 739-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25796148

RESUMO

To research the expression in human lung adenocarcinoma tissue of Cripto-1 (teratocarcinoma derived growth factor-1) gene protein and Activin-A gene protein, and explore the relationship and clinical significance between the two gene protein and clinical pathological characteristic of lung adenocarcinoma. This study had applied the immunohistochemical method to detect the 188 cases of lung adenocarcinoma and expression of Cripto-1 protein and Activin-A protein in 100 cases of normal lung tissue. Then, analysis the relationship between these two-gene protein and clinical lung adenocarcinoma histopathological features, and inherent correlation between these two genes. The positive expression rate of Cripto-1 protein in lung adenocarcinoma tissue was significantly higher in normal lung tissue, while, the positive expression rate of Activin-A protein in lung adenocarcinoma tissue was significantly lower than in normal lung tissue. The high expression of Cripto-1 and low expression of Activin-A was closely related (each P<0.05) to the TNM staging of lung adenocarcinoma, lymph node metastasis and the main pathological tissue staging of lung adenocarcinoma. And the correlation analysis showed that it was negative correlation for the expression of Activin-A protein and Cripto-1 protein in lung adenocarcinoma. The over expression of Cripto-1 and the expression lack of Activin-A were correlated with the occurrence, development, metastasis and malignant degree of lung adenocarcinoma.


Assuntos
Ativinas/análise , Adenocarcinoma/química , Biomarcadores Tumorais/análise , Proteínas Ligadas por GPI/análise , Subunidades beta de Inibinas/análise , Peptídeos e Proteínas de Sinalização Intercelular/análise , Neoplasias Pulmonares/química , Proteínas de Neoplasias/análise , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA