Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36231971

RESUMO

In-depth studies have been conducted on the risk of exposure to air pollution in urban residents, but most of them are static studies based on the population of residential units. Ignoring the real environmental dynamics during daily activity and mobility of individual residents makes it difficult to accurately estimate the level of air pollution exposure among residents and determine populations at higher risk of exposure. This paper uses the example of the Wuhan metropolitan area, high-precision air pollution, and population spatio-temporal dynamic distribution data, and applies geographically weighted regression models, bivariate LISA analysis, and Gini coefficients. The risk of air pollution exposure in elderly, low-age, and working-age communities in Wuhan was measured and the health equity within vulnerable groups such as the elderly and children was studied. We found that ignoring the spatio-temporal behavioral activities of residents underestimated the actual exposure hazard of PM2.5 to residents. The risk of air pollution exposure was higher for the elderly than for other age groups. Within the aging group, a few elderly people had a higher risk of pollution exposure. The high exposure risk communities of the elderly were mainly located in the central and sub-center areas of the city, with a continuous distribution characteristic. No significant difference was found in the exposure risk of children compared to the other populations, but a few children were particularly exposed to pollution. Children's high-exposure communities were mainly located in suburban areas, with a discrete distribution. Compared with the traditional static PM2.5 exposure assessment, the dynamic assessment method proposed in this paper considers the high mobility of the urban population and air pollution. Thus, it can accurately reveal the actual risk of air pollution and identify areas and populations at high risk of air pollution, which in turn provides a scientific basis for proposing planning policies to reduce urban PM2.5 and improve urban spatial equity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , China , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Humanos , Material Particulado/análise , Tecnologia de Sensoriamento Remoto
2.
Artigo em Inglês | MEDLINE | ID: mdl-35162413

RESUMO

After 40 years of reform and opening-up policies, urbanization in China has significantly improved residents' living standards; however, simultaneously, it has caused a series of health problems among Chinese citizens. Communities' built environment is closely related to their residents' health. However, few studies have examined the spatial differences in the health effects of community-built environments. Based on a 2013 health survey of residents in 20 communities in Wuhan, this study uses multilevel linear models to explore the effects of the built environment on residents' health, analyzing the differences in its health-effect within different types of communities. The results showed that there were significant differences in the self-rated health status of residents in different communities, with those in high-end communities reporting a higher self-rated health status. The effect of the built environment on the health of residents in different communities was found to be inconsistent. For instance, the effect of the built environment on low-end community residents was very significant, but it was not obvious for residents in high-end communities. There are significant community-specific differences in the health- effect of the built environment: in high-end communities, residents' health status was mainly restricted by travel accessibility, while in low-end communities, residents' health status was mainly restricted by the accessibility of health facilities. Therefore, this paper proposes a built-environment optimization strategy for different types of communities to provide valuable insights for healthy community planning from a policy perspective.


Assuntos
Ambiente Construído , Nível de Saúde , China , Cidades , Inquéritos e Questionários
3.
Artigo em Inglês | MEDLINE | ID: mdl-35010443

RESUMO

High-temperature risk disaster, a common meteorological disaster, seriously affects people's productivity, life, and health. However, insufficient attention has been paid to this disaster in urban communities. To assess the risk of high-temperature disasters, this study, using remote sensing data and geographic information data, analyzes 973 communities in downtown Wuhan with the geography-weighted regression method. First, the study evaluates the distribution characteristics of high temperatures in communities and explores the spatial differences of risks. Second, a metrics and weight system is constructed, from which the main factors are determined. Third, a risk assessment model of high-temperature disasters is established from disaster-causing danger, disaster-generating sensitivity, and disaster-bearing vulnerability. The results show that: (a) the significance of the impact of the built environment on high-temperature disasters is obviously different from its coefficient space differentiation; (b) the risk in the old city is high, whereas that in the area around the river is low; and (c) different risk areas should design built environment optimization strategies aimed specifically at the area. The significance of this study is that it develops a high-temperature disaster assessment framework for risk identification, impact differentiation, and difference optimization, and provides theoretical support for urban high-temperature disaster prevention and mitigation.


Assuntos
Desastres , China , Cidades , Humanos , Medição de Risco , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA