Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5803, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987241

RESUMO

Mammalian hibernators survive prolonged periods of cold and resource scarcity by temporarily modulating normal physiological functions, but the mechanisms underlying these adaptations are poorly understood. The hibernation cycle of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) lasts for 5-7 months and comprises weeks of hypometabolic, hypothermic torpor interspersed with 24-48-h periods of an active-like interbout arousal (IBA) state. We show that ground squirrels, who endure the entire hibernation season without food, have negligible hunger during IBAs. These squirrels exhibit reversible inhibition of the hypothalamic feeding center, such that hypothalamic arcuate nucleus neurons exhibit reduced sensitivity to the orexigenic and anorexigenic effects of ghrelin and leptin, respectively. However, hypothalamic infusion of thyroid hormone during an IBA is sufficient to rescue hibernation anorexia. Our results reveal that thyroid hormone deficiency underlies hibernation anorexia and demonstrate the functional flexibility of the hypothalamic feeding center.


Assuntos
Anorexia , Grelina , Hibernação , Hipotálamo , Sciuridae , Animais , Hibernação/fisiologia , Sciuridae/fisiologia , Anorexia/fisiopatologia , Anorexia/metabolismo , Hipotálamo/metabolismo , Grelina/metabolismo , Grelina/deficiência , Leptina/deficiência , Leptina/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Masculino , Hormônios Tireóideos/metabolismo , Nível de Alerta/fisiologia , Feminino , Estações do Ano , Comportamento Alimentar/fisiologia
2.
J Clin Invest ; 134(15)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861336

RESUMO

Reproduction is safeguarded by multiple, often cooperative, regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats, and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular coexpression of Kiss1r with the astrocyte markers GFAP and S100-ß occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells in the G-KiR-KO mouse altered gene expression of key factors in PGE2 synthesis in astrocytes and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiR-KO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity, and LH-secretory profiles. Our data unveil a nonneuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.


Assuntos
Astrócitos , Hormônio Liberador de Gonadotropina , Kisspeptinas , Camundongos Knockout , Receptores de Kisspeptina-1 , Transdução de Sinais , Kisspeptinas/metabolismo , Kisspeptinas/genética , Animais , Astrócitos/metabolismo , Camundongos , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Humanos , Ratos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Masculino , Hipotálamo/metabolismo , Neurônios/metabolismo , Dinoprostona/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Reprodução
3.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559054

RESUMO

Mammalian hibernators survive prolonged periods of cold and resource scarcity by temporarily modulating normal physiological functions, but the mechanisms underlying these adaptations are poorly understood. The hibernation cycle of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) lasts for 5-7 months and comprises weeks of hypometabolic, hypothermic torpor interspersed with 24-48-hour periods of an active-like interbout arousal (IBA) state. We show that ground squirrels, who endure the entire hibernation season without food, have negligible hunger during IBAs. These squirrels exhibit reversible inhibition of the hypothalamic feeding center, such that hypothalamic arcuate nucleus neurons exhibit reduced sensitivity to the orexigenic and anorexigenic effects of ghrelin and leptin, respectively. However, hypothalamic infusion of thyroid hormone during an IBA is sufficient to rescue hibernation anorexia. Our results reveal that thyroid hormone deficiency underlies hibernation anorexia and demonstrate the functional flexibility of the hypothalamic feeding center.

4.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459068

RESUMO

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Assuntos
Fome , MicroRNAs , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Fome/fisiologia , Hipotálamo/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA