Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur Radiol ; 30(2): 756-766, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31468162

RESUMO

OBJECTIVES: This study aims to evaluate ultrafast DCE-MRI-derived kinetic parameters that reflect contrast agent inflow effects in differentiating between subcentimeter BI-RADS 4-5 breast carcinomas and benign lesions. METHODS: We retrospectively reviewed consecutive 3-T MRI performed from February to October 2017, during which ultrafast DCE-MRI was performed as part of a hybrid clinical protocol with conventional DCE-MRI. In total, 301 female patients with 369 biopsy-proven breast lesions were included. Ultrafast DCE-MRI was acquired continuously over approximately 60 s (temporal resolution, 2.7-7.1 s/phase) starting simultaneously with the start of contrast injection. Four ultrafast DCE-MRI-derived kinetic parameters (maximum slope [MS], contrast enhancement ratio [CER], bolus arrival time [BAT], and initial area under gadolinium contrast agent concentration [IAUGC]) and one conventional DCE-MRI-derived kinetic parameter (signal enhancement ratio [SER]) were calculated for each lesion. Wilcoxon rank sum test or Fisher's exact test was performed to compare kinetic parameters, volume, diameter, age, and BI-RADS morphological descriptors between subcentimeter carcinomas and benign lesions. Univariate/multivariate logistic regression analyses were performed to determine predictive parameters for subcentimeter carcinomas. RESULTS: In total, 125 lesions (26 carcinomas and 99 benign lesions) were identified as BI-RADS 4-5 subcentimeter lesions. Subcentimeter carcinomas demonstrated significantly larger MS and SER and shorter BAT than benign lesions (p = 0.0117, 0.0046, and 0.0102, respectively). MS, BAT, and age were determined as significantly predictive for subcentimeter carcinoma (p = 0.0208, 0.0023, and < 0.0001, respectively). CONCLUSIONS: Ultrafast DCE-MRI-derived kinetic parameters may be useful in differentiating subcentimeter BI-RADS 4 and 5 carcinomas from benign lesions. KEY POINTS: • Ultrafast DCE-MRI can generate kinetic parameters, effectively differentiating breast carcinomas from benign lesions. • Subcentimeter carcinomas demonstrated significantly larger maximum slope and shorter bolus arrival time than benign lesions. • Maximum slope and bolus arrival time contribute to better management of suspicious subcentimeter breast lesions.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/patologia , Diagnóstico Diferencial , Feminino , Humanos , Cinética , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
Phys Med Biol ; 63(4): 045006, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29345242

RESUMO

Accurate and robust attenuation correction remains challenging in hybrid PET/MR particularly for torsos because it is difficult to segment bones, lungs and internal air in MR images. Additionally, MR suffers from susceptibility artifacts when a metallic implant is present. Recently, joint estimation (JE) of activity and attenuation based on PET data, also known as maximum likelihood reconstruction of activity and attenuation, has gained considerable interest because of (1) its promise to address the challenges in MR-based attenuation correction (MRAC), and (2) recent advances in time-of-flight (TOF) technology, which is known to be the key to the success of JE. In this paper, we implement a JE algorithm using an MR-based prior and evaluate the algorithm using whole-body PET/MR patient data, for both FDG and non-FDG tracers, acquired from GE SIGNA PET/MR scanners with TOF capability. The weight of the MR-based prior is spatially modulated, based on MR signal strength, to control the balance between MRAC and JE. Large prior weights are used in strong MR signal regions such as soft tissue and fat (i.e. MR tissue classification with a high degree of certainty) and small weights are used in low MR signal regions (i.e. MR tissue classification with a low degree of certainty). The MR-based prior is pragmatic in the sense that it is convex and does not require training or population statistics while exploiting synergies between MRAC and JE. We demonstrate the JE algorithm has the potential to improve the robustness and accuracy of MRAC by recovering the attenuation of metallic implants, internal air and some bones and by better delineating lung boundaries, not only for FDG but also for more specific non-FDG tracers such as 68Ga-DOTATOC and 18F-Fluoride.


Assuntos
Algoritmos , Fluordesoxiglucose F18/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Imagem Corporal Total/métodos , Artefatos , Humanos , Imagem Multimodal/métodos , Tomografia Computadorizada por Raios X/métodos
3.
J Nucl Med ; 59(5): 852-858, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29084824

RESUMO

Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUVmax was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods.


Assuntos
Imageamento por Ressonância Magnética , Redes Neurais de Computação , Pelve/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Imagem Multimodal , Prótons , Compostos Radiofarmacêuticos , Tomografia Computadorizada Espiral
4.
Med Phys ; 44(3): 902-913, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112410

RESUMO

PURPOSE: This study introduces a new hybrid ZTE/Dixon MR-based attenuation correction (MRAC) method including bone density estimation for PET/MRI and quantifies the effects of bone attenuation on metastatic lesion uptake in the pelvis. METHODS: Six patients with pelvic lesions were scanned using fluorodeoxyglucose (18F-FDG) in an integrated time-of-flight (TOF) PET/MRI system. For PET attenuation correction, MR imaging consisted of two-point Dixon and zero echo-time (ZTE) pulse sequences. A continuous-value fat and water pseudoCT was generated from a two-point Dixon MRI. Bone was segmented from the ZTE images and converted to Hounsfield units (HU) using a continuous two-segment piecewise linear model based on ZTE MRI intensity. The HU values were converted to linear attenuation coefficients (LAC) using a bilinear model. The bone voxels of the Dixon-based pseudoCT were replaced by the ZTE-derived bone to produce the hybrid ZTE/Dixon pseudoCT. The three different AC maps (Dixon, hybrid ZTE/Dixon, CTAC) were used to reconstruct PET images using a TOF-ordered subset expectation maximization algorithm with a point-spread function model. Metastatic lesions were separated into two classes, bone lesions and soft tissue lesions, and analyzed. The MRAC methods were compared using a root-mean-squared error (RMSE), where the registered CTAC was taken as ground truth. RESULTS: The RMSE of the maximum standardized uptake values (SUVmax ) is 11.02% and 7.79% for bone (N = 6) and soft tissue lesions (N = 8), respectively, using Dixon MRAC. The RMSE of SUVmax for these lesions is significantly reduced to 3.28% and 3.94% when using the new hybrid ZTE/Dixon MRAC. Additionally, the RMSE for PET SUVs across the entire pelvis and all patients are 8.76% and 4.18%, for the Dixon and hybrid ZTE/Dixon MRAC methods, respectively. CONCLUSION: A hybrid ZTE/Dixon MRAC method was developed and applied to pelvic regions in an integrated TOF PET/MRI, demonstrating improved MRAC. This new method included bone density estimation, through which PET quantification is improved.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Neoplasias Pélvicas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Densidade Óssea , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Osso e Ossos/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento Tridimensional/métodos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Neoplasias Pélvicas/patologia , Compostos Radiofarmacêuticos , Neoplasias de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecidos Moles/secundário
5.
Magn Reson Med ; 75(1): 107-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25639956

RESUMO

PURPOSE: To investigate proton density (PD)-weighted zero TE (ZT) imaging for morphological depiction and segmentation of cranial bone structures. METHODS: A rotating ultra-fast imaging sequence (RUFIS) type ZT pulse sequence was developed and optimized for 1) efficient capture of short T2 bone signals and 2) flat PD response for soft-tissues. An inverse logarithmic image scaling (i.e., -log(image)) was used to highlight bone and differentiate it from surrounding soft-tissue and air. Furthermore, a histogram-based bias-correction method was developed for subsequent threshold-based air, soft-tissue, and bone segmentation. RESULTS: PD-weighted ZT imaging in combination with an inverse logarithmic scaling was found to provide excellent depiction of cranial bone structures. In combination with bias correction, also excellent segmentation results were achieved. A two-dimensional histogram analysis demonstrates a strong, approximately linear correlation between inverse log-scaled ZT and low-dose CT for Hounsfield units (HU) between -300 HU and 1,500 HU (corresponding to soft-tissue and bone). CONCLUSIONS: PD-weighted ZT imaging provides robust and efficient depiction of bone structures in the head, with an excellent contrast between air, soft-tissue, and bone. Besides structural bone imaging, the presented method is expected to be of relevance for attenuation correction in positron emission tomography (PET)/MR and MR-based radiation therapy planning.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Crânio/anatomia & histologia , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
J Nucl Med ; 56(3): 417-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25678489

RESUMO

UNLABELLED: MR-based attenuation correction is instrumental for integrated PET/MR imaging. It is generally achieved by segmenting MR images into a set of tissue classes with known attenuation properties (e.g., air, lung, bone, fat, soft tissue). Bone identification with MR imaging is, however, quite challenging, because of the low proton density and fast decay time of bone tissue. The clinical evaluation of a novel, recently published method for zero-echo-time (ZTE)-based MR bone depiction and segmentation in the head is presented here. METHODS: A new paradigm for MR imaging bone segmentation, based on proton density-weighted ZTE imaging, was disclosed earlier in 2014. In this study, we reviewed the bone maps obtained with this method on 15 clinical datasets acquired with a PET/CT/MR trimodality setup. The CT scans acquired for PET attenuation-correction purposes were used as reference for the evaluation. Quantitative measurements based on the Jaccard distance between ZTE and CT bone masks and qualitative scoring of anatomic accuracy by an experienced radiologist and nuclear medicine physician were performed. RESULTS: The average Jaccard distance between ZTE and CT bone masks evaluated over the entire head was 52% ± 6% (range, 38%-63%). When only the cranium was considered, the distance was 39% ± 4% (range, 32%-49%). These results surpass previously reported attempts with dual-echo ultrashort echo time, for which the Jaccard distance was in the 47%-79% range (parietal and nasal regions, respectively). Anatomically, the calvaria is consistently well segmented, with frequent but isolated voxel misclassifications. Air cavity walls and bone/fluid interfaces with high anatomic detail, such as the inner ear, remain a challenge. CONCLUSION: This is the first, to our knowledge, clinical evaluation of skull bone identification based on a ZTE sequence. The results suggest that proton density-weighted ZTE imaging is an efficient means of obtaining high-resolution maps of bone tissue with sufficient anatomic accuracy for, for example, PET attenuation correction.


Assuntos
Imageamento por Ressonância Magnética , Crânio/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia Computadorizada por Raios X
7.
J Magn Reson Imaging ; 24(1): 84-94, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16767705

RESUMO

PURPOSE: To examine the utility of a (3)He spectroscopic q-space technique for detecting changes in lung morphometry in vivo. MATERIALS AND METHODS: A diffusion-weighted spectroscopy sequence was used to collect global diffusion data from healthy adults (N = 11), healthy children (N = 5), and chronic obstructive pulmonary disease (COPD) patients (N = 2) using 40 cc of hyperpolarized (3)He gas within a two second breathhold. Displacement probability profiles (DPP) were obtained by Fourier transformation of diffusion data with respect to q. A bi-Gaussian model was used to decompose the DPPs into narrow and broad components, characterized by root-mean-square displacements X(rms1) and X(rms2), respectively. RESULTS: In healthy adults, the narrow component (X(rms,1)) of the DPP had a mean displacement of 188 +/- 10 microm, slightly less than the reported average size of the alveoli. The broad component (X(rms,2)) had a mean value of 474 +/- 44 microm, comparable to the diameter of the respiratory bronchioles in the acinus. In children, both X(rms1) (167 +/- 4 microm) and X(rms2) (382 +/- 22 microm) compared to healthy adults (P < 0.01). In COPD patients, the mean displacements were elevated (X(rms1): 265 +/- 71 microm; X(rms2): 530 +/- 109 microm) compared to healthy adults. Excellent correlation was found between rms displacements and age (age vs. X(rms,1): r = 0.78, P < 0.001; age vs. X(rms,2): r = 0.90, P < 0.001). CONCLUSION: The q-space parameters agreed remarkably well with published alveolar morphometry data. The results suggest that the technique may be sensitive to disease, as evident from the elevated mean displacements in COPD patients compared to healthy volunteers. Detailed lung microstructural information can be obtained using a very low volume of inhaled (3)He.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Hélio/farmacologia , Humanos , Isótopos/farmacologia , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Doença Pulmonar Obstrutiva Crônica/patologia
8.
Magn Reson Imaging ; 23(8): 871-6, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16275426

RESUMO

In a single-voxel stimulated echo localization sequence in magnetic resonance spectroscopy, magnetic field gradients are inserted within the echo time (TE) to filter signals generated through coherence pathways other than that leading to the stimulated echo. There is a significant penalty for these gradients as they increase the minimum TE, thereby leading to significant signal loss from spin-spin relaxation and phase distortions in coupled spin systems. Here, an RF phase rotation technique is described for a stimulated echo localization sequence that allows removal of the gradients in the TE intervals and, subsequently, reduction of the minimum TE to only 6 ms. Experiments carried out on six healthy volunteers on a 1.5-T whole-body MR system show a significant signal increase in the metabolite concentrations when measured with a 6-ms TE (N-acetyl-aspartate, 12%, P=.002; creatine, 15%, P=.04; and glutamate+glutamine, 92%, P=.02) compared to concentrations measured with data collected at TEs of 15 and 20 ms.


Assuntos
Encéfalo/anatomia & histologia , Espectroscopia de Ressonância Magnética/métodos , Adulto , Algoritmos , Colina/análise , Creatina/análise , Dipeptídeos/análise , Feminino , Ácido Glutâmico/análise , Humanos , Processamento de Imagem Assistida por Computador/métodos , Inositol/análise , Masculino , Imagens de Fantasmas , Valores de Referência , Fatores de Tempo
9.
J Magn Reson ; 173(1): 169-74, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15705525

RESUMO

In this work we present a method for improving the speed of spin-spin relaxation time (T2) measurements for compartmental analysis in stimulated echo localized magnetic resonance spectroscopy without reducing the sampling density. The technique uses a progressive repetition time (TR) to compensate for echo time (TE) dependent variations in saturation effects that would otherwise modulate the received signal at short TRs. The method was validated in T2 studies on 10 young healthy subjects in spectroscopic voxels localized along either the right or left Sylvian fissure (2 x 2 x 1.5 cm3, 10 ms mixing time (TM), 2048 data points, 819.2 ms acquisition time). The TR was automatically adjusted so that TR-TM-TE/2 was kept constant as the TE was incremented. Compared to long TR T2 experiments, the progressive TR technique consistently replicated the T2 relaxation times and reference signals of the tissue water compartment while reducing the data acquisition time by more than 50%. The percent error was on average less than 2% for estimates of T2 and S(0) for the tissue water, an indication that the progressive TR technique is a useful method for determining the tissue water signal for internal referencing.


Assuntos
Química Encefálica , Espectroscopia de Ressonância Magnética/métodos , Água/análise , Adolescente , Adulto , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA