Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 55(16): 2319-31, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27031688

RESUMO

To study the mechanism of ligating nicked RNA strands, we conducted molecular dynamics simulations of Trypanosoma brucei RNA editing ligases L1 and L2 complexed with double-stranded RNA (dsRNA) fragments. In each resulting model, a Mg(2+) ion coordinates the 5'-PO4 of the nicked nucleotide and the 3'-OH of the terminal nucleotide for a nucleophilic reaction consistent with the postulated step 3 chemistry of the ligation mechanism. Moreover, coordination of the 3'-OH to the Mg(2+) ion may lower its pKa, thereby rendering it a more effective nucleophile as an oxyanion. Thus, Mg(2+) may play a twofold role: bringing the reactants into the proximity of each other and activating the nucleophile. We also conducted solvated interaction energy calculations to explore whether ligation specificities can be correlated to ligase-dsRNA binding affinity changes. The calculated dsRNA binding affinities are stronger for both L1 and L2 when the terminal nucleotide is changed from cytosine to guanine, in line with their experimentally measured ligation specificities. Because the ligation mechanism is also influenced by interactions of the ligase with partner proteins from the editosome subcomplex, we also modeled the structure of the RNA-bound L2 in complex with the oligonucleotide binding (OB) domain of largest editosome interacting protein A1. The resulting L2-dsRNA-A1 model, which is consistent with mutagenesis and binding data recorded to date, provides the first atomic-level glimpse of plausible interactions around the RNA ligation site in the presence of an OB domain presented in-trans to a nucleic acid ligase.


Assuntos
Ligases/metabolismo , Proteínas de Protozoários/metabolismo , Edição de RNA , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/metabolismo , Humanos , Ligases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Proteínas de Protozoários/química , RNA de Protozoário/química , Termodinâmica , Trypanosoma brucei brucei/química , Tripanossomíase Africana/parasitologia
2.
J Mol Model ; 16(1): 61-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19471975

RESUMO

Kinetoplastid RNA editing ligases 1 and 2 (KREL1 and KREL2) share a significant degree of sequence homology. However, biochemical experiments have reported that KREL1 and KREL2 differ in their functional roles during the RNA editing process. In this study, we hypothesize that dissimilar roles for KREL1 and KREL2 proteins arise from their different physicochemical characteristics. To test our hypothesis at sequence level, we plotted theoretical titration curves for KREL1, KREL2 and their binding partner proteins. The plots showed a lower isoelectric point for KREL1 compared to that for KREL2 as well as more relative alkalinity and acidity for binding partner proteins of KREL1 and KREL2 at net charge zero, respectively. At structure level, based on the available high resolution structure of KREL1 N-terminal domain and strong sequence similarity between KRELs and other ligases, we built the homology model of KREL2 N-terminal domain. Using Poisson-Boltzmann continuum approach, we calculated the electrostatic potential isosurfaces of KREL1 structure and KREL2 model. KREL1 and KREL2 coordinates differed in their electrostatic isopotential patterns. A wider negative patch on the surface of KREL1 suggests differential affinity for another protein compared to KREL2. In contrast, a larger positive patch on the KREL2 surface predicts its differential affinity and/or specificity for its RNA substrate. Subsequently, we employed in silico mutational scanning and identified the surface-exposed residues contributing to the long-range electrostatic energy of KRELs. We predict that two structurally conserved loops of KRELs, not previously reported in the literature, also recognize their RNA substrates. Our results provide important information about the physicochemical properties of RNA editing ligases that could contribute to the ligation step of RNA editing.


Assuntos
Kinetoplastida/enzimologia , Edição de RNA , RNA Ligase (ATP)/química , Trypanosoma/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA