Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7176-7196, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38679872

RESUMO

Peroxiredoxin (PRDX1) is a tumor-overexpressed antioxidant enzyme for eliminating excessive reactive oxygen species (ROS) to protect tumor cells from oxidative damage. Herein, a series of celastrol urea derivatives were developed based on its cocrystal structure with PRDX1, with the aim of pursuing a PRDX1-specific inhibitor. Among them, derivative 15 displayed potent anti-PRDX1 activity (IC50 = 0.35 µM) and antiproliferative potency against colon cancer cells. It covalently bound to Cys-173 of PRDX1 (KD = 0.37 µM), which was secured by the cocrystal structure of PRDX1 with an analogue of 15 while exhibiting weak inhibitory effects on PRDX2-PRDX6 (IC50 > 50 µM), indicating excellent PRDX1 selectivity. Treatment with 15 dose-dependently decreased the mitochondria membrane potential of SW620 cells, probably due to ROS induced by PRDX1 inhibition, leading to cell apoptosis. In colorectal cancer cell xenograft model, it displayed potent antitumor efficacy with superior safety to celastrol. Collectively, 15 represents a promising PRDX1 selective inhibitor for the development of anticolorectal cancer agents.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Triterpenos Pentacíclicos , Peroxirredoxinas , Ureia , Humanos , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/química , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Camundongos Nus , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Camundongos Endogâmicos BALB C , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Descoberta de Drogas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Ensaios de Seleção de Medicamentos Antitumorais
2.
J Med Chem ; 66(18): 12931-12949, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681508

RESUMO

Cucurbitacin B (CuB) is a potent but toxic anticancer natural product. Herein, we designed and synthesized 2-OH- and 16-OH-modified CuB derivatives to improve their antitumor efficacy and reduce toxicity. Among them, derivative A11 had the most potent antiproliferative activity against A549 lung cancer cells (IC50 = 0.009 µM) and was approximately 10-fold more potent than CuB, while the cytotoxicity of A11 toward normal L02 cells was about 10-fold less potent, indicating a much wider therapeutic window than CuB. Derivative A11 directly binds to the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) protein with a KD value of 2.88 nM, which is about 23-fold more potent than CuB, leading to the decreased expression of downstream apoptosis- and cell cycle-related proteins. More importantly, A11 exhibited much more potent anticancer efficacy in an A549 xenograft mouse model with a TGI rate of 80% and a superior in vivo safety profile than that of CuB.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Triterpenos , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/metabolismo , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
J Ginseng Res ; 46(6): 738-749, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36312731

RESUMO

Background: Ginseng possesses antitumor effects, and ginsenosides are considered to be one of its main active chemical components. Ginsenosides can further be hydrolyzed to generate secondary saponins, and 20(R)-panaxotriol is an important sapogenin of ginsenosides. We aimed to synthesize a new ginsengenin derivative from 20(R)-panaxotriol and investigate its antitumor activity in vivo and in vitro. Methods: Here, 20(R)-panaxotriol was selected as a precursor and was modified into its derivatives. The new products were characterized by 1H-NMR, 13C-NMR and HR-MS and evaluated by molecular docking, MTT, luciferase reporter assay, western blotting, immunofluorescent staining, colony formation assay, EdU labeling and immunofluorescence, apoptosis assay, cells migration assay, transwell assay and in vivo antitumor activity assay. Results: The derivative with the best antitumor activity was identified as 6,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl(tert-butoxycarbonyl)glycinate (A11). The focus of this research was on the antitumor activity of the derivatives. The efficacy of the derivative A11 (IC50 < 0.3 µM) was more than 100 times higher than that of 20(R)- panaxotriol (IC50 > 30 µM). In addition, A11 inhibited the protein expression and nuclear accumulation of the hypoxia-inducible factor HIF-1α in HeLa cells under hypoxic conditions in a dose-dependent manner. Moreover, A11 dose-dependently inhibited the proliferation, migration, and invasion of HeLa cells, while promoting their apoptosis. Notably, the inhibition by A11 was more significant than that by 20(R)-panaxotriol (p < 0.01) in vivo. Conclusion: To our knowledge, this is the first study to report the production of derivative A11 from 20(R)-panaxotriol and its superior antitumor activity compared to its precursor. Moreover, derivative A11 can be used to further study and develop novel antitumor drugs.

4.
Eur J Med Chem ; 220: 113474, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930802

RESUMO

Four series of hypoxia-inducible factor-1 alpha (HIF-1α) functioning derivatives stemming from modifications to the C-29 carboxyl group of celastrol were designed and synthesized, and their anticancer activities were evaluated. To address the structure and activity relationship of each derivative, extensive structural changes were made. HRE luciferase reporter assay demonstrated that 12 modified compounds showed superior HIF-1α inhibitory activity. Among them, compound C6 exhibited the best features: firstly, the strongest HIF-1α inhibitory activity (IC50 = 0.05 µM, 5-fold higher than that of celastrol); secondly, lower cytotoxicity (22-fold lower, C6-16.85 µM vs celastrol-0.76 µM). Thus, the safety factor of C6 was about 112 times higher than that of celastrol. Western blot assay indicated that C6 may inhibit the expression of HIF-1α protein in cells. Additionally, C6 hindered tumor cell cloning, migration and induced cell apoptosis. It is worth mentioning that in the mouse tumor xenograft model, C6 (10 mg/kg) displayed good antitumor activity in vivo, showing a better inhibition rate (74.03%) than the reference compound 5-fluorouracil (inhibition rate, 59.58%). However, the celastrol treatment group experienced collective death after four doses of the drug. Moreover, C6 minimally affected the mouse weight, indicating that its application in vivo has little toxic effect. H&E staining experiments show that it could also exacerbate the degree of tumor cell damage. The results of water solubility experiment show that the solubility of C6 is increased by 1.36 times than that of celastrol. In conclusion, C6 is a promising antitumor agent through HIF-1α pathway.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Triterpenos Pentacíclicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estrutura Molecular , Triterpenos Pentacíclicos/síntese química , Triterpenos Pentacíclicos/química , Solubilidade , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA