Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591780

RESUMO

BACKGROUND: Glioma represents the predominant primary malignant brain tumor. For several years, molecular profiling has been instrumental in the management and therapeutic stratification of glioma, providing a deeper understanding of its biological complexity. Accumulating evidence unveils the putative involvement of zinc finger proteins (ZNFs) in cancer. This study aimed to elucidate the role and significance of ZNF207 in glioma. METHODS: Utilizing online data such as The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Genotype-Tissue Expression (GTEx) project, the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human Protein Atlas (HPA) databases, in conjunction with bioinformatics methodologies including GO, KEGG, GSEA, CIBERSORT immune cell infiltration estimation, and protein-protein interaction (PPI) analysis, enabled a comprehensive exploration of ZNF207's involvement in gliomagenesis. Immunohistochemistry and RT-PCR techniques were employed to validate the expression level of ZNF207 in glioma samples. Subsequently, the biological effects of ZNF207 on glioma cells were explored through in vitro assays. RESULTS: Our results demonstrate elevated expression of ZNF207 in gliomas, correlating with unfavorable patient outcomes. Stratification analyses were used to delineate the prognostic efficacy of ZNF207 in glioma with different clinicopathological characteristics. Immunocorrelation analysis revealed a significant association between ZNF207 expression and the infiltration levels of T helper cells, macrophages, and natural killer (NK) cells. Utilizing ZNF207 expression and clinical features, we constructed an OS prediction model and displayed well discrimination with a C-index of 0.861. Moreover, the strategic silencing of ZNF207 attenuated glioma cell advancement, evidenced by diminished cellular proliferation, weakened cell tumorigenesis, augmented apoptotic activity, and curtailed migratory capacity alongside the inhibition of the epithelial-mesenchymal transition (EMT) pathway. CONCLUSIONS: ZNF207 may identify as a prospective biomarker and therapeutic candidate for glioma prevention, providing valuable insights into understanding glioma pathogenesis and treatment strategies.

3.
Mol Cell Biochem ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019450

RESUMO

Glioma is an intracranial tumor characterized by high mortality and recurrence rates. In the present study, the association of TRPM8 channel-associated factor 2 (TCAF2) in glioma was investigated using bioinformatics, showing significant relationships with age, WHO grade, IDH, and 1p/19q status, as well as being an independent predictor of prognosis. Immunohistochemistry of a glioma sample microarray showed markedly increased TCAF2 expression in glioblastoma relative to lower-grade glioma, with elevated expression predominating in the tumor center. Raised TCAF2 levels promote glioma cell migratory/invasion properties through the epithelial-to-mesenchymal transition-like (EMT-like) process, shown by Transwell and scratch assays and western blotting. It was further found that the effects of TCAF2 were mediated by the activation of STAT3. These results suggest that TCAF2 promotes glioma cell migration and invasion, rendering it a potential drug target in glioma therapy.

4.
Cancer Gene Ther ; 30(2): 345-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36434176

RESUMO

The tumor immunosuppressive microenvironment (IME) significantly affects tumor occurrence, progression, and prognosis, but the underlying molecular mechanisms remain to make known. We investigated the prognostic significance of PDPN and its role in IME in glioma. Weighted gene co-expression network analysis (WGCNA) found PDPN closely related to IDH wildtype status and higher immune score. Correlation analysis suggested PDPN was highly positively relevant to immune checkpoints expression and immune checkpoints block responding status. Correlation analysis together with verification in vitro suggested PDPN highly positively relevant tumor-associated neutrophils (TANs) and tumor-associated macrophages (TAMs). Least absolute shrinkage and selection operator (LASSO) regression employed to develop the prediction model with TANs and TAMs markers showed that high risk scores predicted worse prognosis. We highlight that PDPN overexpression is an independent prognostic indicator, and promotes macrophage M2 polarization and neutrophil degranulation, ultimately devotes to the formation of an immunosuppressive tumor microenvironment. Our findings contribute to re-recognizing the role of PDPN in IDH wildtype gliomas and implicate promising target therapy combined with immunotherapy for this highly malignant tumor.


Assuntos
Glioma , Humanos , Glioma/metabolismo , Prognóstico , Perfilação da Expressão Gênica , Microambiente Tumoral/genética , Glicoproteínas de Membrana/genética
5.
Front Oncol ; 12: 708272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646664

RESUMO

Gliomas are the most common primary brain cancer. While it has been known that calcium-related genes correlate with gliomagenesis, the relationship between calcium-related genes and glioma prognosis remains unclear. We assessed TCGA datasets of mRNA expressions with differentially expressed genes (DEGs) and enrichment analysis to specifically screen for genes that regulate or are affected by calcium levels. We then correlated the identified calcium-related genes with unsupervised/supervised learning to classify glioma patients into 2 risk groups. We also correlated our identified genes with immune signatures. As a result, we discovered 460 calcium genes and 35 calcium key genes that were associated with OS. There were 13 DEGs between Clusters 1 and 2 with different OS. At the same time, 10 calcium hub genes (CHGs) signature model were constructed using supervised learning, and the prognostic risk scores of the 3 cohorts of samples were calculated. The risk score was confirmed as an independent predictor of prognosis. Immune enrichment analysis revealed an immunosuppressive tumor microenvironment with upregulation of checkpoint markers in the high-risk group. Finally, a nomogram was generated with risk scores and other clinical prognostic independent indicators to quantify prognosis. Our findings suggest that calcium-related gene expression patterns could be applicable to predict prognosis and predict levels of immunosuppression.

6.
Front Oncol ; 12: 897702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756689

RESUMO

Background: Ferroptosis is a form of programmed cell death (PCD) that has been implicated in cancer progression, although the specific mechanism is not known. Here, we used the latest DepMap release CRISPR data to identify the essential ferroptosis-related genes (FRGs) in glioma and their role in patient outcomes. Methods: RNA-seq and clinical information on glioma cases were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). FRGs were obtained from the FerrDb database. CRISPR-screened essential genes (CSEGs) in glioma cell lines were downloaded from the DepMap portal. A series of bioinformatic and machine learning approaches were combined to establish FRG signatures to predict overall survival (OS) in glioma patients. In addition, pathways analysis was used to identify the functional roles of FRGs. Somatic mutation, immune cell infiltration, and immune checkpoint gene expression were analyzed within the risk subgroups. Finally, compounds for reversing high-risk gene signatures were predicted using the GDSC and L1000 datasets. Results: Seven FRGs (ISCU, NFS1, MTOR, EIF2S1, HSPA5, AURKA, RPL8) were included in the model and the model was found to have good prognostic value (p < 0.001) in both training and validation groups. The risk score was found to be an independent prognostic factor and the model had good efficacy. Subgroup analysis using clinical parameters demonstrated the general applicability of the model. The nomogram indicated that the model could effectively predict 12-, 36-, and 60-months OS and progression-free interval (PFI). The results showed the presence of more aggressive phenotypes (lower numbers of IDH mutations, higher numbers of EGFR and PTEN mutations, greater infiltration of immune suppressive cells, and higher expression of immune checkpoint inhibitors) in the high-risk group. The signaling pathways enriched closely related to the cell cycle and DNA damage repair. Drug predictions showed that patients with higher risk scores may benefit from treatment with RTK pathway inhibitors, including compounds that inhibit RTKs directly or indirectly by targeting downstream PI3K or MAPK pathways. Conclusion: In summary, the proposed cancer essential FRG signature predicts survival and treatment response in glioma.

7.
Cancer Gene Ther ; 29(8-9): 1117-1129, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34992215

RESUMO

Glioblastoma is the most common primary intracranial malignant tumor in adults and has high morbidity and high mortality. TMEM158 has been reported to promote the progression of solid tumors. However, its potential role in glioma is still unclear. Here, we found that TMEM158 expression in human glioma cells in the tumor core was significantly higher than that in noncancerous cells at the tumor edge using bioinformatics analysis. Cancer cells in patients with primary GBMs harbored significantly higher expression of TMEM158 than those in patients with WHO grade II or III gliomas. Interestingly, regardless of tumor grading, human glioma samples that were IDH1-wild-type (IDH1-WT) exhibited higher expression of TMEM158 than those with IDH1-mutant (IDH1-Mut). We also illustrated that TMEM158 mRNA expression was correlated with poor overall survival in glioma patients. Furthermore, we demonstrated that silencing TMEM158 inhibited the proliferation of glioma cells and that TMEM158 overexpression promoted the migration and invasion of glioma cells by stimulating the EMT process. We found that the underlying mechanism involves STAT3 activation mediating TMEM158-driven glioma progression. In vivo results further confirmed the inhibitory effect of the TMEM158 downregulation on glioma growth. Collectively, these findings further our understanding of the oncogenic function of TMEM158 in gliomas, which represents a potential therapeutic target, especially for GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Neoplasias Encefálicas/patologia , Proliferação de Células/genética , Glioblastoma/genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras de Tumor/genética
8.
Cancer Biol Med ; 16(2): 299-311, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31516750

RESUMO

OBJECTIVE: Vasculogenic mimicry (VM) channels that are lined by tumor cells are a functional blood supply in malignant tumors. However, the role of VM-initiating cells remains poorly understood. Cancer stem-like cells (CSCs) are positively correlated with VM. In this study, triple-negative breast cancer (TNBC) enriched with CSCs was used to investigate the relationship between VM and CSCs. METHODS: The expression of several CSC markers was detected by immunohistochemistry in 100 human breast cancer samples. The clinical significance of CSC markers and the relationship between VM, CSCs, breast cancer subtypes, and VM-associated proteins were analyzed. CD133+ and ALDH+ human and mouse TNBC cells were isolated by FACS to examine the ability of VM formation and the spatial relationship between VM and CSCs. RESULTS: CSCs were associated with TNBC subtype and VM in human invasive breast cancer. CSCs in TNBC MDA-MB-231 cells formed more VM channels and expressed more molecules promoting VM than the non-TNBC MCF-7 cells in vitro. MDA-MB-231 cells that encircled VM channels on Matrigel expressed CD133. Moreover, CSCs were located near VM channels in the 3D reconstructed blood supply system in human TNBC grafts. The CD133+ and ALDH+ cells isolated from TA2 mouse breast cancer formed more VM channels in vivo. CONCLUSIONS: CSCs line VM channels directly. Additionally, CSCs provide more VM-related molecules to synergize VM formation. The signaling pathways that control CSC differentiation may also be potential treatment targets for TNBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA