Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202401707, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700007

RESUMO

The pursuit of high efficacy C-C coupling during the electrochemical CO2 reduction reaction remains a tremendous challenge owing to the high energy barrier of CO2 activation and insufficient coverage of the desired intermediates on catalytic sites. Inspired by the concept of capture-coupled CO2 activation, we fabricated quinone-grafted carbon nanofibers via an in situ oxidative carbonylation strategy. The quinone functionality of carbon nanofibers promotes the capture of CO2 followed by activation. At a current density of 400 mA cm-2, the Faradaic efficiency of ethylene reached 62.9 %, and a partial current density of 295 mA cm-2 was achieved on the quinone-rich carbon nanofibers. The results of in situ spectroscopy and theoretical calculations indicated that the remarkable selectivity enhancement in ethylene originates from the quinone structure, rather than the electronic properties of Cu particles. The interaction of quinone with CO2 increases the local *CO coverage and simultaneously hinders the co-adsorption of *H on Cu sites, which greatly reduces the energy barrier for C-C coupling and restrains subsequent *CO protonation. The modulation strategy involving specific oxygenated structure, as an independent degree of freedom, guides the design of functionalized carbon materials for tailoring the selectivity of desired products during the CO2 capture and reduction.

2.
J Colloid Interface Sci ; 665: 88-99, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518423

RESUMO

Rational designing efficient transition metal-based multifunctional electrocatalysts is highly desirable for improving the efficiency of hydrogen production from water cracking. Herein, a self-supported three-phase heterostructure electrocatalyst of nickel-cobalt sulfide/nickel phosphide/iron phosphide (CoNi5S8-Ni2P-FeP2) was prepared by a two-step gas-phase sulfurization/phosphorization strategy. The heterostructure in CoNi5S8-Ni2P-FeP2 provides a favorable interfacial environment for electron transfer and synergistic interaction of multiphase active components, while the introduced electronegative P/S not only serves as a carrier for proton capture in the hydrogen evolution reaction (HER) process but also promotes the metal-electron outflow, which in turn accelerates the generation of high-valent Ni3+ species to enhance the catalytic activity of oxygen evolution reaction (OER) and urea oxidation reaction (UOR). As expected, CoNi5S8-Ni2P-FeP2 reveals excellent multifunctional electrocatalytic properties. An overpotential of 35/215 mV is required to reach 10 mA cm-2 for HER/OER. More encouragingly, a current of 100 mA cm-2 requires only 1.36 V for UOR with CoNi5S8-Ni2P-FeP2 as anode, which is much lower as compared to the OER (1.50 V). Besides, a two-electrode water/urea electrolyzer assembled based on CoNi5S8-Ni2P-FeP2 has a voltage of only 1.59/1.48 V when the system reaches 50 mA cm-2. This work provides a new idea for the design of energy-efficient water/urea-assisted water-splitting multifunctional catalysts with multi-component heterostructure synergistic interface engineering.

3.
Nat Commun ; 15(1): 416, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195701

RESUMO

The performances of single-atom catalysts are governed by their local coordination environments. Here, a thermal replacement strategy is developed for the synthesis of single-atom catalysts with precisely controlled and adjustable local coordination environments. A series of Co-SxN4-x (x = 0, 1, 2, 3) single-atom catalysts are successfully synthesized by thermally replacing coordinated N with S at elevated temperature, and a volcano relationship between coordinations and catalytic performances toward electrochemical CO2 reduction is observed. The Co-S1N3 catalyst has the balanced COOH*and CO* bindings, and thus locates at the apex of the volcano with the highest performance toward electrochemical CO2 reduction to CO, with the maximum CO Faradaic efficiency of 98 ± 1.8% and high turnover frequency of 4564 h-1 at an overpotential of 410 mV tested in H-cell with CO2-saturated 0.5 M KHCO3, surpassing most of the reported single-atom catalysts. This work provides a rational approach to control the local coordination environment of the single-atom catalysts, which is important for further fine-tuning the catalytic performance.

4.
Nanoscale ; 15(22): 9605-9634, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212346

RESUMO

Slow oxygen reduction reaction (ORR) kinetics is the main factor restricting the development of fuel cells and metal-air batteries. Carbon-based single-atom catalysts (SACs) have the advantages of high electrical conductivity, maximal atom utilization, and high mass activity, thus showing great potential in exploring low-cost and high-efficiency ORR catalysts. For carbon-based SACs, the defects in the carbon support, the coordination of non-metallic heteroatoms, and the coordination number have a great influence on the adsorption of the reaction intermediates, thus significantly affecting the catalytic performance. Consequently, it is of vital importance to summarize the impacts of atomic coordination on the ORR. In this review, we focus on the regulation of the central atoms and coordination atoms of carbon-based SACs for the ORR. The survey involves various SACs, from noble metals (Pt) to transition metals (Fe, Co, Ni, Cu, etc.) and major group metals (Mg, Bi, etc.). At the same time, the influence of defects in the carbon support, the coordination of non-metallic heteroatoms (such as B, N, P, S, O, Cl, etc.), and the coordination number of the well-defined SACs on the ORR were put forward. Then, the impact of the neighboring metal monomers for SACs on the ORR performance is discussed. Finally, the current challenges and prospects for the future development of carbon-based SACs in coordination chemistry are presented.

5.
Dalton Trans ; 52(11): 3325-3332, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36808190

RESUMO

The development of highly active, low cost and durable catalysts for selective hydrogenation of aldehydes is imperative and challenging. In this contribution, we rationally constructed ultrafine Pt nanoparticles (Pt NPs) supported on the internal and external surfaces of halloysite nanotubes (HNTs) by a facile double solvent strategy. The influence of Pt loading, HNTs surface properties, reaction temperature, reaction time, H2 pressure and solvents on the performance of cinnamaldehyde (CMA) hydrogenation was analyzed. The optimal catalysts with the Pt loading of 3.8 wt% and the average Pt particle size of 2.98 nm exhibited outstanding catalytic activity for the hydrogenation of CMA to cinnamyl alcohol (CMO) with 94.1% conversion of CMA and 95.1% selectivity to CMO. More impressively, the catalyst showed excellent stability during six cycles of use. The ultra-small size and high dispersion of Pt NPs, the negative charge on the outer surface of HNTs, the -OH on the inner surface of HNTs, and the polarity of anhydrous ethanol solvent account for the outstanding catalytic performance. This work offers a promising way to develop high-efficiency catalysts with high CMO selectivity and stability by combining clay mineral halloysite and ultrafine nanoparticles.

6.
Nat Commun ; 13(1): 1322, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277523

RESUMO

Copper-based materials can reliably convert carbon dioxide into multi-carbon products but they suffer from poor activity and product selectivity. The atomic structure-activity relationship of electrocatalysts for the selectivity is controversial due to the lacking of systemic multiple dimensions for operando condition study. Herein, we synthesized high-performance CO2RR catalyst comprising of CuO clusters supported on N-doped carbon nanosheets, which exhibited high C2+ products Faradaic efficiency of 73% including decent ethanol selectivity of 51% with a partial current density of 14.4 mA/cm-2 at -1.1 V vs. RHE. We evidenced catalyst restructuring and tracked the variation of the active states under reaction conditions, presenting the atomic structure-activity relationship of this catalyst. Operando XAS, XANES simulations and Quasi-in-situ XPS analyses identified a reversible potential-dependent transformation from dispersed CuO clusters to Cu2-CuN3 clusters which are the optimal sites. This cluster can't exist without the applied potential. The N-doping dispersed the reduced Cun clusters uniformly and maintained excellent stability and high activity with adjusting the charge distribution between the Cu atoms and N-doped carbon interface. By combining Operando FTIR and DFT calculations, it was recognized that the Cu2-CuN3 clusters displayed charge-asymmetric sites which were intensified by CH3* adsorbing, beneficial to the formation of the high-efficiency asymmetric ethanol.

7.
ACS Appl Mater Interfaces ; 13(14): 16536-16544, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33793186

RESUMO

The carbon-neutral photocatalytic CO2 reduction reaction (CO2RR) enables the conversion of CO2 into hydrocarbon fuels or value-added chemicals under mild conditions. Achieving high selectivity for the desired products of the CO2RR remains challenging. Herein, a self-redox strategy is developed to construct strong interfacial bonds between Ag nanoparticles and an ultrathin CoAl-layered double hydroxide (U-LDH) nanosheet support, where the surface hydroxyl groups associated with oxygen vacancies of U-LDH play a critical role in the formation of the interface structure. The supported Ag@U-LDH acts as a highly efficient catalyst for CO2 reduction, resulting in a high CO evolution rate of 757 µmol gcat-1 h-1 and a CO selectivity of 94.5% under light irradiation. Such a high catalytic selectivity may represent a new record among current photocatalytic CO2RR to CO systems. The Ag-O-Co interface bonding is confirmed by Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and FTIR CO2 adsorption studies. The in situ FTIR measurements indicate that the formation of the *COOH intermediate is accelerated and the mass transfer is improved during the CO2RR. Density functional theory calculations show that the Ag-O-Co interface reduces the formation energy of the *COOH intermediate and accumulates localized charge. Experimental and theoretical analysis collectively demonstrates that the strong interface bonding between Ag and U-LDH activates the interface structure as catalytically CO2RR active sites, effectively optimizing the binding energies with reacted intermediates and facilitating the CO2RR performance.

8.
Angew Chem Int Ed Engl ; 59(50): 22465-22469, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32876989

RESUMO

Main-group element indium (In) is a promising electrocatalyst which triggers CO2 reduction to formate, while the high overpotential and low Faradaic efficiency (FE) hinder its practical application. Herein, we rationally design a new In single-atom catalyst containing exclusive isolated Inδ+ -N4 atomic interface sites for CO2 electroreduction to formate with high efficiency. This catalyst exhibits an extremely large turnover frequency (TOF) up to 12500 h-1 at -0.95 V versus the reversible hydrogen electrode (RHE), with a FE for formate of 96 % and current density of 8.87 mA cm-2 at low potential of -0.65 V versus RHE. Our findings present a feasible strategy for the accurate regulation of main-group indium catalysts for CO2 reduction at atomic scale.

9.
Nano Lett ; 20(7): 5443-5450, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515966

RESUMO

Oxygen-involved electrochemical reactions are crucial for plenty of energy conversion techniques. Herein, we rationally designed a carbon-based Mn-N2C2 bifunctional electrocatalyst. It exhibits a half-wave potential of 0.915 V versus reversible hydrogen electrode for oxygen reduction reaction (ORR), and the overpotential is 350 mV at 10 mA cm-2 during oxygen evolution reaction (OER) in alkaline condition. Furthermore, by means of operando X-ray absorption fine structure measurements, we reveal that the bond-length-extended Mn2+-N2C2 atomic interface sites act as active centers during the ORR process, while the bond-length-shortened high-valence Mn4+-N2C2 moieties serve as the catalytic sites for OER, which is consistent with the density functional theory results. The atomic and electronic synergistic effects for the isolated Mn sites and the carbon support play a critical role to promote the oxygen-involved catalytic performance, by regulating the reaction free energy of intermediate adsorption. Our results give an atomic interface strategy for nonprecious bifunctional single-atom electrocatalysts.

10.
Nat Commun ; 11(1): 3049, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546781

RESUMO

Atomic interface regulation is thought to be an efficient method to adjust the performance of single atom catalysts. Herein, a practical strategy was reported to rationally design single copper atoms coordinated with both sulfur and nitrogen atoms in metal-organic framework derived hierarchically porous carbon (S-Cu-ISA/SNC). The atomic interface configuration of the copper site in S-Cu-ISA/SNC is detected to be an unsymmetrically arranged Cu-S1N3 moiety. The catalyst exhibits excellent oxygen reduction reaction activity with a half-wave potential of 0.918 V vs. RHE. Additionally, through in situ X-ray absorption fine structure tests, we discover that the low-valent Cuprous-S1N3 moiety acts as an active center during the oxygen reduction process. Our discovery provides a universal scheme for the controllable synthesis and performance regulation of single metal atom catalysts toward energy applications.

11.
J Am Chem Soc ; 142(18): 8431-8439, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32302111

RESUMO

The engineering coordination environment offers great opportunity in performance tunability of isolated metal single-atom catalysts. For the most popular metal-Nx (MNx) structure, the replacement of N atoms by some other atoms with relatively weak electronegativity has been regarded as a promising strategy for optimizing the coordination environment of an active metal center and promoting its catalytic performance, which is still a challenge. Herein, we proposed a new synthetic strategy of an in situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks for designing atomic Co1-P1N3 interfacial structure, where a cobalt single atom is costabilized by one P atom and three N atoms (denoted as Co-SA/P-in situ). In the acidic media, the Co-SA/P-in situ catalyst with Co1-P1N3 interfacial structure exhibits excellent activity and durability for the hydrogen evolution reaction (HER) with a low overpotential of 98 mV at 10 mA cm-2 and a small Tafel slope of 47 mV dec-1, which are greatly superior to those of catalyst with Co1-N4 interfacial structure. We discover that the bond-length-extended high-valence Co1-P1N3 atomic interface structure plays a crucial role in boosting the HER performance, which is supported by in situ X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculation. We hope this work will promote the development of high performance metal single-atom catalysts.

12.
Chem Commun (Camb) ; 56(21): 3127-3130, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32055813

RESUMO

Atomic-dispersed Pt anchored on defect-rich porous alumina sheets (Pt/dp-Al2O3) was accessed via a wet impregnation combined with pyrolysis method. These nanosheets functionalized by atomic-dispersed Pt possess a high density of active sites, exhibiting an exceptional catalytic activity combined with cyclic performance in the diboration of alkynes. The selectivity and conversion yield could reach as high as 97% and 98%, respectively.

13.
Chem Sci ; 11(23): 5994-5999, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34094090

RESUMO

Atomic interface engineering is an effective pathway to regulate the performance of single metal atom catalysts for electrochemical reactions in energy applications. Herein, we construct a sulfur modified Mn-N-C single atom catalyst through a metal-organic framework derived atomic interface strategy, which exhibits outstanding ORR activity with a half-wave potential of 0.916 V vs. RHE in alkaline media. Moreover, operando X-ray absorption spectroscopy analysis indicates that the isolated bond-length extending the low-valence Mn-N4-C x S y moiety serves as an active site during the ORR process. These findings suggest a promising method for the advancement of single atom catalysis.

14.
J Phys Chem Lett ; 10(10): 2606-2615, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31034234

RESUMO

The insertion of cation impurities into quantum dots (QDs) as a dopant has been proved to be an efficient way to tailor their optical, electronic, and magnetic properties; however, the low quantum yield (QY) and poor photostability strongly limit their further applications. We report a strategy to coat a thin oxide shell around the heterovalent doped QDs to enhance their QYs and photostabilities simultaneously. In the case of Ag+-doped CdS QDs, the controlled cation exchange reaction between Cd2+ and ternary Ag3SbS3 nanoparticles not only realizes the Ag+ doping in CdS QDs but also generates a thin Sb2O3 shell around the surface of the QDs. Enabled by such, as-prepared CdS:Ag@Sb2O3 QDs exhibited enhanced photostability and high QY of 66.5%. We envision that the findings presented here will inspire more novel protocols for advancing the practical applications of doped QDs.

15.
Chemistry ; 24(51): 13676-13680, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30009408

RESUMO

Focusing on ternary I-III-VI2 colloidal nanocrystals (NCs) synthesized with precise control of the composition (from doping to ternary composition) and NIR fluorescence performance, monodisperse binary In3+ -doped Ag2 S NCs and ternary AgInS2 NCs have been achieved successfully by facile low-temperature in situ conversion of colloidal Ag2 S nanoparticles. In3+ ions were inserted into the crystal lattice of Ag2 S NCs at a relatively low temperature as dopant and ternary AgInS2 NCs were obtained at a higher temperature following a phase transition. These doped Ag2 S and AgInS2 NCs based on different indium precursor concentrations were explored with respect to the position and intensity of the near-infrared photoluminescent emission at different doping levels and crystal phase evolution.

16.
Nanomaterials (Basel) ; 6(6)2016 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-28335231

RESUMO

To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni) and nickel-platinum (NiPt) nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS) techniques. The Ni2+ was reduced to metallic Ni° via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka) of 18.82 × 10-3 s-1, 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA