Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Total Environ ; 918: 170542, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309361

RESUMO

Due to extensive application and recurrent wildfires, an increasing number of pyrogenic carbon (PyC) colloids are present in the environment, experiencing processes of environmental aging. Subsurface environments are typically heterogeneous in unsaturated conditions, which may affect the transport of PyC colloids. This study focused on the transport of both pristine and aged PyC colloids in physically (clean coarse and fine sand) and physicochemically (iron oxides-coated coarse and clean fine sand) heterogeneous porous media at three different water saturations (100 %, 70 %, and 40 %). In physically heterogeneous porous media, the decrease in water saturation from 100 % to 40 % led to a shift in the main water flow from the clean coarse sand to the clean fine sand domain, resulting in a continuous decrease in the transport of PyC colloids. In physicochemically heterogeneous porous media, the primary water flow shifted from the iron oxides-coated coarse sand to the clean fine sand domain, resulting in an initial increase and subsequent decrease in PyC colloid transport. Aging enhanced the transport of PyC colloids, attributed to the increasingly negative and hydrophilic surface. Retention profiles revealed substantial PyC colloid retention at the interface between coarse and fine sand domains. The release of retained PyC colloids exhibited two peaks at 100 % and 70 % water saturations, along with a single peak at 40 % water saturation. Additionally, the increased irreversible retention was observed at lower water saturation. This study underscores the significance of water content, environmental aging, and heterogeneity in PyC colloid transport. It provides essential insights into the environmental fate of PyC colloids in natural field conditions.

2.
Sci Total Environ ; 912: 169163, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072279

RESUMO

Hardpan-based profiles naturally formed under semi-arid climatic conditions have substantial potential in rehabilitating sulfidic tailings, resulting from their aggregation microstructure regulated by Fe-Si cements. Nevertheless, eco-engineered approaches for accelerating the formation of complex cementation structure remain unclear. The present study aims to investigate the microbial functions of extremophiles on mineral dissolution, oxidation, and aggregation (cementation) through a microcosm experiment containing pyrites and polysilicates, of which are dominant components in typical sulfidic tailings. Microspectroscopic analysis revealed that pyrite was rapidly dissolved and massive microbial corrosion pits were displayed on pyrite surfaces. Synchrotron-based X-ray absorption spectroscopy demonstrated that approximately 30 % pyrites were oxidized to jarosite-like (ca. 14 %) and ferrihydrite-like minerals (ca. 16 %) in talc group, leading to the formation of secondary Fe precipitates. The Si ions co-dissolved from polysilicates may be embedded into secondary Fe precipitates, while these clustered Fe-Si precipitates displayed distinct morphology (e.g., "circular" shaped in the talc group, "fine-grained" shaped in the chlorite group, and "donut" shaped in the muscovite group). Moreover, the precipitates could join together and act as cementing agents aggregating mineral particles together, forming macroaggregates in talc and chlorite groups. The present findings revealed critical microbial functions on accelerating mineral dissolution, oxidation, and aggregation of pyrite and various silicates, which provided the eco-engineered feasibility of hardpan-based technology for mine site rehabilitation.


Assuntos
Acidithiobacillus , Cloretos , Ferro , Dióxido de Silício , Sulfetos , Talco , Minerais/química , Eletrólitos , Ferro da Dieta
3.
Am Surg ; 90(2): 270-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37772778

RESUMO

Obesity in individuals can have consequences ranging from metabolically healthy obesity to serious morbidities and reduce the quality and duration of life. A meta-analysis was conducted to assess the role of abdominal drainage on postoperative complications after bariatric surgery. PubMed, Embase, and the Cochrane Library were systematically searched for eligible studies. The results revealed that abdominal drainage was associated with surgical complications, with a pooled odds ratio (OR) of 1.70 (P < .001), but not associated with wound infection (OR: 1.04; P = .762). Associations with surgical complications were mainly detected from retrospective cohort studies. The use of abdominal drainage showed associations with death (OR: 1.68; P < .001) and reoperation (OR: 1.49; P < .001). These findings revealed that abdominal drainage during bariatric surgery was associated with surgical complications, death, and reoperation. These results should be taken with caution since randomized controlled trials and retrospective studies were analyzed together.


Assuntos
Cirurgia Bariátrica , Complicações Pós-Operatórias , Humanos , Estudos Retrospectivos , Drenagem/métodos , Abdome , Cirurgia Bariátrica/efeitos adversos
4.
Environ Sci Technol ; 57(36): 13588-13600, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647508

RESUMO

Although our understanding of the effects of microplastics on the dynamics of soil organic matter (SOM) has considerably advanced in recent years, the fundamental mechanisms remain unclear. In this study, we examine the effects of polyethylene and poly(lactic acid) microplastics on SOM processes via mineralization incubation. Accordingly, we evaluated the changes in carbon dioxide (CO2) and methane (CH4) production. An O2 planar optical sensor was used to detect the temporal behavior of dissolved O2 during incubation to determine the microscale oxygen heterogeneity caused by microplastics. Additionally, the changes in soil dissolved organic matter (DOM) were evaluated using a combination of spectroscopic approaches and ultrahigh-resolution mass spectrometry. Microplastics increased cumulative CO2 emissions by 160-613%, whereas CH4 emissions dropped by 45-503%, which may be attributed to the oxygenated porous habitats surrounding microplastics. Conventional and biodegradable microplastics changed the quantities of soil dissolved organic carbon. In the microplastic treatments, DOM with more polar groups was detected, suggesting a higher level of electron transport. In addition, there was a positive correlation between the carbon concentration, electron-donating ability, and CO2 emission. These findings suggest that microplastics may facilitate the mineralization of SOM by modifying O2 microenvironments, DOM concentration, and DOM electron transport capability. Accordingly, this study provides new insights into the impact of microplastics on soil carbon dynamics.


Assuntos
Microplásticos , Plásticos , Transporte de Elétrons , Dióxido de Carbono , Elétrons , Matéria Orgânica Dissolvida , Oxigênio , Polietileno
5.
Chemosphere ; 336: 139149, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37307927

RESUMO

Soil organic matter plays an important role in the stability, transport, and fate of soil colloids. At present, studies have mostly focused on the effects of adding exogenous organic matter on soil colloidal properties, while there is very limited research on the effect of reduced inherent soil organic matter on the environmental behavior of soil colloids. This study investigated the stability and transport behavior of black soil colloids (BSC) and black soil colloids with reduced inherent organic matter (BSC-ROM) under different ionic strength (5, 50 mM) and background solution pH (4.0, 7.0, and 9.0) conditions. Meanwhile, the release behavior of two soil colloids in the saturated sand column under transient ionic strength conditions was also studied. The results showed that both ionic strength reduction and pH increase increased the negative charges of BSC and BSC-ROM, and improved the electrostatic repulsion between soil colloids and grain surface, thereby promoting the stability and mobility of soil colloids. The decrease in inherent organic matter had little effect on the surface charge of soil colloids, suggesting that the electrostatic repulsion was not the main force affecting the stability and mobility of BSC and BSC-ROM, and reducing inherent organic matter might significantly reduce the stability and mobility of soil colloids by weakening the steric hindrance interaction. The decrease of transient ionic strength reduced the depth of the energy minimum and activated the soil colloids retained on the surface of the grain at three pH conditions. This study is helpful to predict the potential impact of soil organic matter degradation on the fate of BSC in natural environment system.


Assuntos
Coloides , Solo , Solo/química , Coloides/química , Concentração Osmolar , Areia
6.
Environ Res ; 231(Pt 2): 116227, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244494

RESUMO

Microplastics (MP) and nanoplastics (NP) contamination of the terrestrial environment is a growing concern worldwide and is thought to impact soil biota, particularly the micro and mesofauna community, by various processes that may contribute to global change in terrestrial systems. Soils act as a long-term sink for MP, accumulating these contaminants and increasing their adverse impacts on soil ecosystems. Consequently, the whole terrestrial ecosystem is impacted by microplastic pollution, which also threatens human health by their potential transfer to the soil food web. In general, the ingestion of MP in different concentrations by soil micro and mesofauna can adversely affect their development and reproduction, impacting terrestrial ecosystems. MP in soil moves horizontally and vertically because of the movement of soil organisms and the disturbance caused by plants. However, the effects of MP on terrestrial micro-and mesofauna are largely overlooked. Here, we give the most recent information on the forgotten impacts of MP contamination of soil on microfauna and mesofauna communities (protists, tardigrades, soil rotifers, nematodes, collembola and mites). More than 50 studies focused on the impact of MP on these organisms between 1990 and 2022 have been reviewed. In general, plastic pollution does not directly affect the survival of organisms, except under co-contaminated plastics that can increase adverse effects (e.g. tire-tread particles on springtails). Besides, they can have adverse effects at oxidative stress and reduced reproduction (protists, nematodes, potworms, springtails or mites). It was observed that micro and mesofauna could act as passive plastic transporters, as shown for springtails or mites. Finally, this review discusses how soil micro- and mesofauna play a key role in facilitating the (bio-)degradation and movement of MP and NP through soil systems and, therefore, the potential transfer to soil depths. More research should be focused on plastic mixtures, community level and long-term experiments.


Assuntos
Ecossistema , Plásticos , Humanos , Plásticos/toxicidade , Solo , Microplásticos , Cadeia Alimentar
7.
Sci Total Environ ; 880: 163313, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030377

RESUMO

The aggregation kinetics of biochar colloids (BCs) play a crucial role in the fate and transport of contaminants, as well as the carbon (C) cycle in the environment. However, the colloidal stability of BCs from various feedstocks is very limited. In this study, the critical coagulation concentration (CCC) of twelve standard biochars pyrolyzed from various feedstocks (municipal source, agricultural waste, herbaceous residue, and woody feedstock) at 550 °C and 700 °C were investigated, and the relationship between the physicochemical characteristics of biochar and the colloidal stability of BCs was further analyzed. The CCC of BCs in the NaCl solution followed the trend of municipal source < agricultural waste < herbaceous residue < woody feedstock, which was similar to the order of C content in biochar. The CCC of BCs showed a strong positive correlation with the C content of various biochars, especially pyrolyzed at a higher temperature of 700 °C. The BCs derived from lignin-rich feedstock (e.g., woody feedstock) had the highest colloidal stability, followed by cellulose-rich feedstock (e.g., agricultural waste and herbaceous residue). The BCs derived from organic matter-rich feedstock (municipal source) were easy to aggregate in the aqueous environment. This study quantitatively provides new insights into the relationship between BCs stability and biochar characteristics from various feedstocks, which is critical to assess biochar environmental behavior in aqueous environments.


Assuntos
Carbono , Carvão Vegetal , Temperatura , Carvão Vegetal/química , Coloides , Solo/química
8.
Environ Sci Technol ; 57(4): 1837-1847, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36594827

RESUMO

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.


Assuntos
Carbono , Solo , Solo/química , Sequestro de Carbono , Carvão Vegetal
9.
Sci Total Environ ; 859(Pt 2): 160415, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36427725

RESUMO

Biochar colloids released from biochar materials are ubiquitous in the environment and undergo environmental transformation processes that may alter their properties. Natural subsurface environments are usually under unsaturated conditions, which could affect the transport of biochar colloids. This study investigated the transport of pristine and aged biochar colloids under unsaturated conditions by aggregation test, bubble column experiment, and sand column experiment. After aging, the biochar showed a more negative, hydrophilic, and rougher surface. Compared with pristine biochar colloids, aged biochar colloids in NaCl solution were not retained at the air-water interface (AWI) due to their more hydrophilic and rougher surface. In CaCl2 solution, more pristine and aged biochar colloids were retained at the AWI because Ca2+ weakened the electrostatic repulsion between biochar colloids and the AWI. With the decrease in saturation, the transport of pristine and aged biochar colloids decreased by 17 %­67 % through the retention at AWI and air-water-solid (AWS) interface. The transport of biochar colloids in NaCl solution was increased by 10 %­20 % after aging as the aged biochar was not retained at the AWI. The difference of transport between pristine and aged biochar colloids in CaCl2 solution (<8 %) was lower than that in NaCl solution due to the enhanced retention of aggregated biochar colloids at the AWI and AWS interfaces. These results highlight the importance of the surface structure of biochar on its behavior in the environment, which is essential for assessing the potential of biochar application for carbon sequestration and environmental protection.


Assuntos
Coloides , Água , Porosidade , Coloides/química , Cátions
10.
Environ Pollut ; 317: 120776, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455773

RESUMO

Pyrogenic carbon (PyC) nanoparticles are widespread in the environment, which is important to global carbon cycle. PyC can exist for millions of years and undergo various environmental aging processes. To better understand the roles of Fe oxyhydroxides and water content on the pristine and aged PyC transport, adsorption and column experiments were conducted under three saturations (100%, 70%, and 40%) and three pH (5, 7, and 9) in both clean and Fe oxyhydroxide-coated sand. At high water saturations (100% and 70%), the mobility of both the pristine and aged PyC was enhanced at high pH due to strong electrostatic repulsion, and the aged PyC showed higher mobility than the pristine PyC because of its more negative charge and hydrophilic surface. The coating of Fe oxyhydroxides on sand decreased the mobility of both the pristine and aged PyC due to weak electrostatic repulsion, large specific surface area, and high roughness. At low saturation (40%), solution pH showed little effect on both the pristine and aged PyC mobility, and water saturation became the main factor affecting PyC mobility. Almost no pristine or aged PyC transported out from the Fe oxyhydroxide-coated sand column because Fe oxide increased the roughness of the sand surface, which led to a sharp increase in the air-water-solid interface and retention sites. This study demonstrates that water content, environmental aging, and Fe oxyhydroxides are significant in the fate and transport of PyC nanoparticles in environments, which provides a good fundamental understanding for the assessment of pyrogenic carbon application in environmental protection and carbon sequestration.


Assuntos
Carbono , Nanopartículas , Carbono/química , Areia , Porosidade , Nanopartículas/química , Água , Dióxido de Silício/química
11.
J Minim Access Surg ; 19(2): 263-271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35915539

RESUMO

Background: The prognosis of middle-aged patients with colorectal cancer (CRC) treated by laparoscopic resection (LR) is unclear. This study aimed to evaluate the survival outcomes of LR compared with open resection (OR) for middle-aged patients with CRC. Patients and Methods: This retrospective cohort study used the data from a database of all consecutive colorectal resections performed between January 2009 and December 2017. Propensity score matching (PSM) was performed to handle the selection bias based on age, gender, body mass index, tumour location, AJCC stage and admission year. Univariate and multivariate COX regression model was used to identify risk factors of overall survival (OS) and disease-free survival (DFS). Results: After PSM, 154 patients were included in each group. Compared with the OR group in the total cohort, there were better survival outcomes in the LR group for 5-year OS and 5-year DFS (both P < 0.001). These differences were observed for Stage II and III diseases and for all CRC, irrespective of location. The multivariate analysis showed that tumour ≥5 cm (hazard ratio [HR] = 1.750, 95% confidence interval [CI]: 1.026-2.986, P = 0.040), Stage III (HR = 14.092, 95% CI: 1.894-104.848, P = 0.010) and LR (HR = 0.300, 95% CI: 0.160-0.560, P < 0.001) were independently associated with OS. Pre-operative carcinoembryonic antigen ≥5 ng/ml (HR = 3.954, 95% CI: 1.363-11.473, P = 0.011), Stage III (HR = 6.206, 95% CI: 1.470-26.200, P = 0.013) and LR (HR = 0.341, 95% CI: 0.178-0.653, P = 0.001) were independently associated with DFS. Conclusions: In middle-aged patients with CRC, LR achieves better survival than OR. Complications are similar, except for less blood loss and shorter post-surgical hospital stay with LR.

12.
Environ Res ; 214(Pt 4): 114043, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029838

RESUMO

Fluoride (F-) is one of the essential elements found in soil and water released from geogenic sources and several anthropogenic activities. Fluoride causes fluorosis, dental and skeletal growth problems, teeth mottling, and neurological damage due to prolonged consumption, affecting millions worldwide. Adsorption is an extensively implemented technique in water and wastewater treatment for fluoride, with significant potential due to efficiency, cost-effectiveness, ease of operation, and reusability. This review highlights the current state of knowledge for fluoride adsorption using biochar-based materials and the limitations of biochar for fluoride-contaminated groundwater and industrial wastewater treatment. Biochar materials have shown significant adsorption capacities for fluoride under the influence of low pH, biochar dose, initial concentration, temperature, and co-existing ions. Modified biochar possesses various functional groups (-OH, -CC, -C-O, -CONH, -C-OH, X-OH), in which enhanced hydroxyl (-OH) groups onto the surface plays a significant role in fluoride adsorption via electrostatic attraction and ion exchange. Regeneration and reusability of biochar sorbents need to be performed to a greater extent to improve removal efficiency and reusability in field conditions. Furthermore, the present investigation identifies the limitations of biochar materials in treating fluoride-contaminated drinking groundwater and industrial effluents. The fluoride removal using biochar-based materials at an industrial scale for understanding the practical feasibility is yet to be documented. This review work recommend the feasibility of biochar-based materials in column studies for fluoride remediation in the future.


Assuntos
Fluoretos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Estudos de Viabilidade , Cinética , Água , Poluentes Químicos da Água/análise
13.
Chemosphere ; 306: 135555, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35780992

RESUMO

The aggregation and transport of biochar colloids (BCs) in the soil and groundwater are critical for applying biochar in the field and assessing long-term environmental risk. This research aimed to study the influence of dissolved organic matter (DOM) with different molecular weights (including humic acid, HA; bovine serum albumin, BSA; deoxyribonucleic acid, DNA) and three minerals (including kaolinite, goethite, and hematite) on the aggregation and transport behaviors of BCs. The adsorption of DOM on the surface of BCs increased the stability, inhibited aggregation, and promoted the transport of BCs. As the molecular weight of DOM increased, the thicknesses of the adsorption layer of HA, BSA, and DNA on BCs surface were 2.2 nm, 5.3 nm, and 5.6 nm, respectively, resulting in increasing steric hindrance and improving the stability and mobility of BCs. Kaolinite also significantly enhanced the stability and mobility of BCs by increasing the electrostatic repulsion. Goethite and hematite quickly combined with BCs through electrostatic attraction, resulting in stronger aggregation and retention of BCs. Compared to hematite, goethite provided more adsorption sites for BCs due to its needle-like shape, so goethite caused a larger heteroaggregation rate. Overall, the presence of DOM with different molecular weights and the minerals with varying surface charges in the soil environment had a significant and distinct impact on the stability, aggregation, and transport of BCs, which advances the knowledge of colloidal biochar fate in the soil and groundwater.


Assuntos
Caulim , Solo , Adsorção , Carvão Vegetal , Coloides , DNA , Matéria Orgânica Dissolvida , Compostos Férricos , Substâncias Húmicas/análise , Ferro , Minerais
14.
Sci Total Environ ; 838(Pt 3): 156471, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660606

RESUMO

Microplastics can accumulate in soils and strongly affect the biogeochemical cycle. Biodegradable plastic films show potential as sustainable alternatives that could reduce microplastic soil contamination and accumulation. However, the effects of traditional and biodegradable microplastics on soil organic matter (SOM) stability are not sufficiently understood, particularly under varying temperatures. The objective of this study was to examine the effects of polyethylene (PE) and biodegradable polylactic acid (PLA) microplastics on SOM stability and bacterial community in two contrasting soils (Black soil vs. Loess soil) under varying temperature conditions (15 °C vs. 25 °C). Results showed that microplastics addition significantly enhanced cumulative CO2 emissions and DOC contents, particularly 1 % PLA treatment accelerated CO2 emissions by 19 % - 74 %, DOC content by 3 % - 23 % at 25 °C. A higher temperature sensitivity (Q10) at the PLA treatment indicated that PLA is more susceptible to elevated temperature compared to PE. The presence of both PE and PLA microplastics significantly changed the DOC spectral characteristics, i.e., high temperature increased the value of the specific UV absorbance (SUVA) in soil without microplastics, while decreased it in soil with microplastics. In comparison to soil without microplastics, soil exposed to 1 % microplastics had lower MBC concentrations and greater metabolic quotient. 16S rRNA gene sequencing showed that the presence of PLA microplastic significantly alters soil bacterial community. PE and CK had similar Bray-Curtis distances between two temperatures, while PLA increased the dissimilarity between CK compared to PE. Compared to the two soils, loess soil is more sensitive to microplastics addition. Microplastics have a non-ignorable effect on soil organic matter stability, the interaction between microplastics and soil environment should be considered.


Assuntos
Microplásticos , Solo , Bactérias , Dióxido de Carbono , Plásticos/química , Poliésteres , Polietileno , RNA Ribossômico 16S , Solo/química , Temperatura
15.
Environ Pollut ; 307: 119501, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636713

RESUMO

Field application of manure compost introduces a large quantity of dissolved organic matter (DOM), which can affect the migration of DOM-associated contaminants. In this study, the transport of humic acid (HA) and compost-derived dissolved organic matter (CDOM) in two porous media under various conditions, including ionic types, ionic strength, and influent concentrations, were investigated by column experiments and modeling analysis. Increasing Na+ concentration did not affect the transport of CDOM and HA in quartz sands, but inhibited CDOM transport in ferrihydrite (Fh)-coated sands. The retention recoveries of CDOM in Fh-coated sands were not changed with increasing NaCl concentration, suggesting that the adsorption of CDOM on Fh-coated sands caused by increasing NaCl concentration was a reversible process. Ca2+ could reduce the mobility of CDOM and HA through bridge bonding and electrostatic interaction. CDOM had a higher mobility than HA in quartz sands under CaCl2 conditions because the aggregation stability of CDOM was stronger than that of HA. The ferrihydrite coating increased the roughness of sand surface, resulting in lower mobility of CDOM in the Fh-coated sands than in quartz sands. A part of CDOM adsorbed onto Fh-coated sand was strongly bound through ligand exchange-surface complexation. The pore volume of CDOM required to saturate adsorption sites onto the Fh-coated sand depends on the influent CDOM concentration. The influent CDOM with higher concentration required less pore volume to achieve adsorption equilibrium. Modeling analysis suggested that the types of deposition sites provided by Fh-coated sand are mainly irreversible sites. Our findings demonstrated that CDOM transport in the sand columns may change the porous medium's physicochemical properties and alter the hydrochemistry conditions. Therefore, these factors mentioned above should not be ignored when evaluating the environmental risks of CDOM.


Assuntos
Compostagem , Quartzo , Matéria Orgânica Dissolvida , Compostos Férricos , Substâncias Húmicas , Porosidade , Areia , Dióxido de Silício/química , Cloreto de Sódio
16.
J Environ Manage ; 317: 115356, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623129

RESUMO

Chromium originates from geogenic and extensive anthropogenic activities and significantly impacts natural ecosystems and human health. Various methods have been applied to remove hexavalent chromium (Cr(VI)) from aquatic environmental matrices, including adsorption via different adsorbents, which is considered to be the most common and low-cost approach. Biochar materials have been recognized as renewable carbon sorbents, pyrolyzed from various biomass at different temperatures under limited/no oxygen conditions for heavy metals remediation. This review summarizes the sources, chemical speciation & toxicity of Cr(VI) ions, and raw and modified biochar applications for Cr(VI) remediation from various contaminated matrices. Mechanistic understanding of Cr(VI) adsorption using different biochar-based materials through batch and saturated column adsorption experiments is documented. Electrostatic interaction and ion exchange dominate the Cr(VI) adsorption onto the biochar materials in acidic pH media. Cr(VI) ions tend to break down as HCrO4-, CrO42-, and Cr2O72- ions in aqueous solutions. At low pH (∼1-4), the availability of HCrO4- ions attributes the electrostatic forces of attraction due to the available functional groups such as -NH4+, -COOH, and -OH2+, which encourages higher adsorption of Cr(VI). Equilibrium isotherm, kinetic, and thermodynamic models help to understand Cr(VI)-biochar interactions and their adsorption mechanism. The adsorption studies of Cr(VI) are summarized through the fixed-bed saturated column experiments and Cr-contaminated real groundwater analysis using biochar-based sorbents for practical applicability. This review highlights the significant challenges in biochar-based material applications as green, renewable, and cost-effective adsorbents for the remediation of Cr(VI). Further recommendations and future scope for the implications of advanced novel biochar materials for Cr(VI) removal and other heavy metals are elegantly discussed.


Assuntos
Ecossistema , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cromo/análise , Humanos , Cinética , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 833: 155148, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35405228

RESUMO

The colloidal particles, especially those at the nanoscale, are the most active part of the pyrogenic carbon (biochar). Increasingly applied biochar has resulted in a large number of biochar nanoparticles (NPs) being released into the environment. The aggregation of biochar NPs affects their environmental behavior and fate. The complex effects of anion type (Cl-, SO42-) and protein (bovine serum albumin, BSA) on the aggregation of wheat straw biochar (WB) and pinewood biochar (PB) NPs in solutions were investigated by the time-resolved dynamic light scattering method. The critical coagulation concentration (CCC) of WB and PB NPs in Na2SO4 solution was higher than their CCCs in NaCl solution, which was consistent with the Hofmeister series that SO42-, a kosmotrope anion, increased the interaction between water molecules, thus enhancing the hydrophobic interactions between biochar NPs in solution and promoting their aggregation, while Cl-, a chaotropic agent, exhibited the opposite effect. When BSA was added into the solution, BSA was adsorbed on the surface of biochar NPs and BSA corona was formed, which inhibited the aggregation of biochar NPs by inducing steric force. The enhanced stability of biochar NPs by BSA was more significant in NaCl than in Na2SO4 solution because BSA corona had a more negatively charged surface and a more steric structure in NaCl solution, thus generating stronger electrical repulsion and steric hindrance. The classical DLVO theory and the XDLVO theory incorporating the steric repulsion (in the presence of BSA) were used to interpret the aggregation and dispersion of biochar NPs. Through this study, we found that anion type indirectly affected the aggregation of biochar NPs by influencing the interaction between water molecules, while the aggregation of BSA-biochar NPs conjugates is mainly influenced by the surface charge and structure of BSA corona.


Assuntos
Nanopartículas , Soroalbumina Bovina , Ânions , Carvão Vegetal , Cinética , Nanopartículas/química , Soroalbumina Bovina/química , Cloreto de Sódio/química , Água/química
18.
Environ Res ; 206: 112238, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688646

RESUMO

Cadmium (Cd) and arsenic (As) contamination of paddy soils is a serious global issue because of the opposite geochemical behavior of Cd and As in paddy soils. Rice plant (Oryza sativa L.) cultivation in Cd- and As- contaminated paddy soil is regarded as one of the main dietary cause of Cd and As entry in human beings. This study aimed to determine the impact of goethite-modified biochar (GB) on bioavailability of both Cd and As in Cd- and As- polluted paddy soil. Contrary to control and biochar (BC) amendments, the application of GB amendments significantly impeded the accumulation of both Cd and As in rice plants. The results confirmed an obvious reduction in Cd and As content of rice grains by 85% and 77%, respectively after soil supplementation with GB 2% amendment. BC 3% application minimized the Cd uptake by 59% in the rice grains as compared to the control but exhibited a little impact on As accumulation in rice grains. Sequential extraction results displayed an increase in immobile Cd and As fractions of the soil by decreasing the bioavailable fractions of both elements after GB treatments. Fe-plaque formation on the root surfaces was significantly variable (P Ë‚ 0.05) among all the amendments. GB 2% treatment significantly increased the Fe content (10 g kg-1) of root Fe-plaque by 48%, which ultimately enhanced the sequestration of Cd and As by Fe-plaque and minimized the transport of Cd and As in rice plants. Moreover, GB treatments significantly changed the relative abundance of the microbial community in the rice rhizosphere and minimized the metal(loid)s mobility in the soil. The relative abundance of Acidobacteria, Firmicutes and Verrucomicrobia increased with GB 2% treatment while those of Bacteroidetes and Choloroflexi decreased. Our findings confirmed improvement in the rice grains quality regarding enhanced amino acid contents with GB application. Overall, the results of this study demonstrated that GB amendment simultaneously alleviated the Cd and As concentrations in edible parts of rice plant and provided a new valuable method to protect the public health by effectively remediating the co-occurrence of Cd and As in paddy soils.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Cádmio/análise , Carvão Vegetal , Humanos , Compostos de Ferro , Minerais , Oryza/química , Solo/química , Poluentes do Solo/análise
19.
Chemosphere ; 287(Pt 1): 132018, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34454221

RESUMO

Chemical oxidation and high-temperature heating have been widely used for the decontamination of soils polluted by hydrocarbons and the removal of soil organic matter. Chemical oxidation and high-temperature heating decreased the stability of soil colloids, but the difference in colloidal stability and aggregation behaviors of soil after chemical oxidation and high-temperature heating is not clear. In this study, taken black soil as an example, we tested the stability profiles of black soil colloids (BC), hydrogen peroxide (H2O2) treated black soil colloids (BC_H2O2), and 350 °C treated black soil colloids (BC_350 °C) in three salt solutions (NaCl, CaCl2, and Na2SO4) with different salt concentrations. The stability of soil colloids in salt solutions was in the order of BC > BC_350 °C > BC_H2O2. The salt concentrations at which three colloids started to be unstable were much lower for CaCl2 solution than those for NaCl and Na2SO4 solution. Salt concentrations that suspension started to be unstable were similar in NaCl and Na2SO4 solution for all the three colloids, but the colloidal stability profile in NaCl solution decreased faster than that in Na2SO4 solution when the suspension was unstable. The stability profiles of three colloids at the fast aggregation stage could be well fitted with the proposed exponential model, and model parameters (t0 and Smax) could reflect the stability behaviors of soil colloids in various salt solutions.


Assuntos
Peróxido de Hidrogênio , Solo , Coloides , Calefação , Temperatura
20.
J Hazard Mater ; 424(Pt D): 127659, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774354

RESUMO

Phytic acid (myo-inositol hexaphosphate, IHP) is a dominant form of organic phosphate (OP) in organic carbon-rich surface soil. The IHP impact on Fe (oxyhydr)oxide transport is critical for iron and phosphorus (bio)geochemical processes in iron and phosphorus rich soil and subsurface systems. Three typical Fe (oxyhydr)oxides (ferrihydrite, hematite, and goethite) were studied in this research. The effects of IHP and morphology on Fe (oxyhydr)oxide transport and IHP cotransport had been investigated using saturated sand columns. The results showed that IHP significantly enhanced the mobility of Fe (oxyhydr)oxide by 30-90% due to the stronger electrostatic repulsion. At low IHP concentration (< 50 µM IHP), the rod-like goethite and goethite-facilitated IHP showed high mobility due to their orientation and motion along the water flow, which is 70% faster than ferrihydrite and hematite at pH 5 and 90% faster at pH 10. The mobility of amorphous ferrihydrite was slowest among three selected iron oxides (< 37% at pH 5 and < 72% at pH 10). At high IHP concentration (> 50 µM IHP), the surface precipitation might have occurred on ferrihydrite because of its poorly ordered crystallinity, contributing to its less negatively charged surface and weak transport. The new insight provided in this study is essential for evaluating the fate and transport behavior of iron and iron-facilitate OP in soil rich in iron and OP.


Assuntos
Óxidos , Ácido Fítico , Adsorção , Compostos Férricos , Ferro , Minerais , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA