Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Legal Med ; 137(5): 1615-1627, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37395744

RESUMO

Temperature-based time of death estimation using simulation methods such as the finite element method promise higher accuracy and broader applicability in nonstandard cooling scenarios than established phenomenological methods. Their accuracy depends crucially on the simulation model to capture the actual situation, which in turn hinges on the representation of the corpse's anatomy in form of computational meshes as well as on the thermodynamic parameters. While inaccuracies in anatomy representation due to coarse mesh resolution are known to have a minor impact on the estimated time of death, the sensitivity with respect to larger differences in the anatomy has so far not been studied. We assess this sensitivity by comparing four independently generated and vastly different anatomical models in terms of the estimated time of death in an identical cooling scenario. In order to isolate the impact of shape variation, the models are scaled to a reference size, and the possible impact of measurement location variation is excluded explicitly by finding measurement locations leading to minimum deviations. The thus obtained lower bound on the impact of anatomy on the estimated time of death shows, that anatomy variations lead to deviations of at least 5-10%.


Assuntos
Temperatura Baixa , Humanos , Temperatura , Análise de Elementos Finitos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA