Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(15): 11656-64, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22334704

RESUMO

T lymphocytes circulate between the blood, tissues, and lymph. These T cells carry out immune functions, using the C-C chemokine receptor 7 (CCR7) and its cognate ligands, CCL19 and CCL21, to enter and travel through the lymph nodes. Distinct roles for each ligand in regulating T lymphocyte trafficking have remained elusive. We report that in the human T cell line HuT78 and in primary murine T lymphocytes, signaling from CCR7/CCL19 leads to increased expression and phosphorylation of extracellular signal-regulated kinase 5 (ERK5) within eight hours of stimulation. Within 48-72 h we observed peak levels of endothelial differentiation gene 1 (EDG-1), which mediates the egress of T lymphocytes from lymph nodes. The increased expression of EDG-1 was preceded by up-regulation of its transcription factor, Krüppel-like factor 2 (KLF-2). To determine the cellular effect of disrupting ERK5 signaling from CCR7, we examined the migration of ERK5(flox/flox)/Lck-Cre murine T cells to EDG-1 ligands. While CCL19-stimulated ERK5(flox/flox) naïve T cells showed increased migration to EDG-1 ligands at 48 h, the migration of ERK5(flox/flox)/Lck-Cre T cells remained at a basal level. Accordingly, we define a novel signaling pathway that controls EDG-1 up-regulation following stimulation of T cells by CCR7/CCL19. This is the first report to link the two signaling events that control migration through the lymph nodes: CCR7 mediates entry into the lymph nodes and EDG-1 signaling controls their subsequent exit.


Assuntos
Quimiocina CCL19/fisiologia , Regulação da Expressão Gênica , Receptores CCR7/fisiologia , Receptores de Lisoesfingolipídeo/metabolismo , Linfócitos T/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Quimiocina CCL21/fisiologia , Quimiotaxia , Células Dendríticas/metabolismo , Expressão Gênica , Humanos , Lisofosfolipídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores CCR7/metabolismo , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato , Linfócitos T/fisiologia
2.
Transl Oncol ; 3(6): 354-61, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21151474

RESUMO

C-C chemokine receptor 7 (CCR7) controls lymphocyte migration to secondary lymphoid organs. Although CCR7 has been implicated in targeting the metastasis of cancers to lymph nodes, the role of CCR7 in the metastasis of breast cancer, along with the molecular mechanisms that are controlled by CCR7 that target breast cancer metastasis to the lymph nodes, has yet to be defined. To explore the cellular and molecular mechanisms of breast cancer cell migration to the lymph nodes, we used the mouse MMTV-PyVmT mammary tumor cells (PyVmT) transfected with CCR7 and the human CCR7-expressing MCF10A and MCF7 mammary cell lines. We found that the CCR7 ligands CCL19 and CCL21, controlled cell migration using the ß(1)-integrin heterodimeric adhesion molecules. To define a physiological significance for CCR7 regulation of migration, we used the FVB syngeneic mouse model of metastatic breast cancer. When CCR7-negative PyVmT cells transfected with control vector were orthotopically transferred to the mammary fat pad of FVB mice, tumors metastasized to the lungs (10/10 mice) but not to the lymph nodes (0/10). In contrast, CCR7-expressing PyVmT (CCR7-PyVmT) cells metastasized to the lymph nodes (6/10 mice) and had a reduced rate of metastasis to the lungs (4/10 mice). CCR7-PyVmT tumors grew significantly faster than PyVmT tumors, which mirrored the growth in vitro, of CCR7-PyVmT, MCF7, and MCF10A mammospheres. This model provides tools for studying lymph node metastasis, CCR7 regulation of tumor cell growth, and targeting of breast cancer cells to the lymph nodes.

3.
J Biol Chem ; 285(50): 38781-7, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20889506

RESUMO

CCR7 binds to its cognate ligand, CCL21, to mediate the migration of circulating naive T lymphocytes to the lymph nodes. T lymphocytes can bind to fibronectin, a constituent of lymph nodes, via their ß1 integrins, which is a primary mechanism of T lymphocyte migration; however, the signaling pathways involved are unclear. We report that rapid (within 2 min) and transient phosphorylation of ERK1/2 is required for T cell migration on fibronectin in response to CCL21. Conversely, prevention of ERK1/2 phosphorylation by inhibition of its kinase, MAPK/MEK, prevented T lymphocyte migration. Previous studies have suggested that phospholipase Cγ1 (PLCγ1) can mediate phosphorylation of ERK1/2, which is required for ß1 integrin activation. Paradoxically, we found that inhibition of PLCγ1 phosphorylation by the general PLC inhibitor U73122 was associated with a delayed and reduced phosphorylation of ERK1/2 and reduced migration of T lymphocytes on fibronectin. To further characterize the relationship between ERK1/2 and PLCγ1, we reduced PLCγ1 levels by 85% using shRNA and observed a reduced phosphorylation of ERK1/2 and a significant loss of CCR7-mediated migration of T lymphocytes on fibronectin. In addition, we found that inhibition of ERK1/2 phosphorylation by U0126 resulted in a decreased phosphorylation of PLCγ1, suggesting a feedback loop between ERK1/2 and PLCγ1. Overall, these results suggest that the CCR7 signaling pathway leading to T lymphocyte migration on fibronectin is a ß1 integrin-dependent pathway involving transient ERK1/2 phosphorylation, which is modulated by PLCγ1.


Assuntos
Quimiocina CCL21/metabolismo , Fibronectinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfolipase C gama/metabolismo , Receptores CCR7/metabolismo , Linfócitos T/citologia , Animais , Movimento Celular , Quimiocinas/metabolismo , Quimiotaxia , Humanos , Integrina beta1/metabolismo , Camundongos , Fosforilação , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA