Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 19(1): 91, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956695

RESUMO

BACKGROUND: Angelicin, which is found in Psoralea, can help prevent osteoporosis by stopping osteoclast formation, although the precise mechanism remains unclear. METHODS: We evaluated the effect of angelicin on the oxidative stress level of osteoclasts using ovariectomized osteoporosis model rats and RAW264.7 cells. Changes in the bone mass of the femur were investigated using H&E staining and micro-CT. ROS content was investigated by DHE fluorescence labelling. Osteoclast-related genes and proteins were examined for expression using Western blotting, immunohistochemistry, tartrate-resistant acid phosphatase staining, and real-time quantitative PCR. The influence of angelicin on osteoclast development was also evaluated using the MTT assay, double luciferin assay, chromatin immunoprecipitation, immunoprecipitation and KAT6A siRNA transfection. RESULTS: Rats treated with angelicin had considerably higher bone mineral density and fewer osteoclasts. Angelicin prevented RAW264.7 cells from differentiating into osteoclasts in vitro when stimulated by RANKL. Experiments revealed reduced ROS levels and significantly upregulated intracellular KAT6A, HO-1, and Nrf2 following angelicin treatment. The expression of genes unique to osteoclasts, such as MMP9 and NFATc1, was also downregulated. Finally, KAT6A siRNA transfection increased intracellular ROS levels while decreasing KAT6A, Nrf2, and HO-1 protein expression in osteoclasts. However, in the absence of KAT6A siRNA transfection, angelicin greatly counteracted this effect in osteoclasts. CONCLUSIONS: Angelicin increased the expression of KAT6A. This enhanced KAT6A expression helps to activate the Nrf2/HO-1 antioxidant stress system and decrease ROS levels in osteoclasts, thus inhibiting oxidative stress levels and osteoclast formation.

2.
Front Immunol ; 14: 1186892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215145

RESUMO

A growing body of research suggests that short-chain fatty acids (SCFAs), metabolites produced by intestinal symbiotic bacteria that ferment dietary fibers (DFs), play a crucial role in the health status of symbiotes. SCFAs act on a variety of cell types to regulate important biological processes, including host metabolism, intestinal function, and immune function. SCFAs also affect the function and fate of immune cells. This finding provides a new concept in immune metabolism and a better understanding of the regulatory role of SCFAs in the immune system, which impacts the prevention and treatment of disease. The mechanism by which SCFAs induce or regulate the immune response is becoming increasingly clear. This review summarizes the different mechanisms through which SCFAs act in cells. According to the latest research, the regulatory role of SCFAs in the innate immune system, including in NLRP3 inflammasomes, receptors of TLR family members, neutrophils, macrophages, natural killer cells, eosinophils, basophils and innate lymphocyte subsets, is emphasized. The regulatory role of SCFAs in the adaptive immune system, including in T-cell subsets, B cells, and plasma cells, is also highlighted. In addition, we discuss the role that SCFAs play in regulating allergic airway inflammation, colitis, and osteoporosis by influencing the immune system. These findings provide evidence for determining treatment options based on metabolic regulation.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Imunidade , Ácidos Graxos Voláteis/biossíntese , Ácidos Graxos Voláteis/química , Ácidos Graxos Voláteis/metabolismo , Imunidade Inata , Humanos , Animais , Transdução de Sinais , Inflamação/imunologia , Inflamação/metabolismo
3.
Huan Jing Ke Xue ; 44(1): 312-322, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635819

RESUMO

The net primary productivity (NPP) of vegetation, as an indispensable element in carbon cycle studies, characterizes plant growth status. This study applied MODIS NPP products from 2000 to 2020 and multi-source data on elevation, slope, precipitation, temperature, land use, and population density in Shanxi province. We used trend analysis, correlation analysis, and geographic probes to explore the spatial and temporal evolution characteristics and driving factors of NPP in Shanxi province and its national planned coal-mining areas. The results showed that: ① the overall NPP exhibited a fluctuating upward trend from 2000 to 2020, with an average rate of increase (in terms of C) of 6.7 g·(m2·a)-1. The total NPP varied significantly among different land types, with arable land>forest land>grassland>construction land>water area>unused land. ② The spatial heterogeneity of NPP changes was obvious, with lower NPP values in the western and northern regions and higher average NPP values in the eastern and southern regions; the NPP comparison of three major coal bases showed that Jindong coal base>Jinzhong coal base>Jinbei coal base. ③ The correlation between NPP and precipitation was high, with 62.2% of regions having a significant correlation (P<0.05), mainly in central and eastern Shanxi province. The relationship between NPP changes and temperature was weak, with only 1.10% of regions having a significant correlation (P<0.05). ④ The comparison of the q-means of each factor in different years based on geographic probes showed that precipitation (0.165)>land use (0.124)>population density (0.085)>slope (0.080)>elevation (0.064)>air temperature (0.024), further indicating that precipitation was the dominant driver of NPP changes over the years. 5 The influence of the two-factor interaction was significantly higher than that of the single factor, and the influence of anthropogenic factors was gradually increasing. From 2000 to 2020, the interaction factor precipitation∩population density (0.275) with the highest explanatory power replaced precipitation∩temperature (0.385) as the interaction factor precipitation with the highest explanatory power.


Assuntos
Ecossistema , Modelos Teóricos , Florestas , Temperatura , Carvão Mineral , China
4.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235270

RESUMO

Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.


Assuntos
Antioxidantes , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Hidrogéis/farmacologia , Resveratrol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA