Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Mar Environ Res ; 197: 106477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554488

RESUMO

Photoperiod and temperature are two main factors in the growth of macroalgae, and changes in photoperiod and diurnal temperature difference exist in natural condition. In order to study the effects of photoperiod and diurnal temperature difference on the growth of green algae Ulva prolifera, we cultured this species under three light/dark cycles (light: dark = 10:14, 12:12 and 16:08) with constant (22 °C for light and dark period, noted as 22-22 °C) and diurnal temperature difference (22 °C and 16 °C for light and dark period, respectively, noted as 22-16 °C) conditions. The results showed that: 1) Compared with 10:14 light/dark cycle, the growth of U. prolifera under 12:12 light/dark cycle was significantly enhanced by 39% and 16% for 22-22 °C and 22-16 °C treatments, respectively, while the increase proportion decreased when the daylength increase from 12 h to 16 h. 2) The enhancement in growth induced by diurnal temperature difference was observed under 10:14 light/dark cycle, but not for 12:12 and 16:08 light/dark cycle treatments. 3) The Chl a content and photosynthetic rate increased under short light period and 22-22 °C conditions, while under 22-16 °C conditions, higher photosynthetic rate was observed under 12:12 light/dark cycle and no significant difference in Chl a content was observed. 4) Under 22-22 °C conditions, compared with 10:14 (L:D) treatment, the expression levels of proteins in light-harvesting complexes, PSII and carbon fixation were down regulated, while the photorespiration and pentose phosphate pathway (PPP) were up regulated by 16:08 light dark cycle. Then we speculate that the higher photosynthetic rate may be one compensation mechanism in short photoperiod, and under long light period condition the up regulations of photorespiration and PPP can be in charge of the decrease in enhancement growth induced by longer daylength.


Assuntos
Algas Comestíveis , Fotoperíodo , Ulva , Temperatura , Fotossíntese/fisiologia
2.
Elife ; 132024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497789

RESUMO

The vertebrate kidneys play two evolutionary conserved roles in waste excretion and osmoregulation. Besides, the kidney of fish is considered as a functional ortholog of mammalian bone marrow that serves as a hematopoietic hub for generating blood cell lineages and immunological responses. However, knowledge about the properties of kidney hematopoietic cells, and the functionality of the kidney in fish immune systems remains to be elucidated. To this end, our present study generated a comprehensive atlas with 59 hematopoietic stem/progenitor cell (HSPC) and immune-cells types from zebrafish kidneys via single-cell transcriptome profiling analysis. These populations included almost all known cells associated with innate and adaptive immunity, and displayed differential responses to viral infection, indicating their diverse functional roles in antiviral immunity. Remarkably, HSPCs were found to have extensive reactivities to viral infection, and the trained immunity can be effectively induced in certain HSPCs. In addition, the antigen-stimulated adaptive immunity can be fully generated in the kidney, suggesting the kidney acts as a secondary lymphoid organ. These results indicated that the fish kidney is a dual-functional entity with functionalities of both primary and secondary lymphoid organs. Our findings illustrated the unique features of fish immune systems, and highlighted the multifaced biology of kidneys in ancient vertebrates.


Assuntos
Perciformes , Viroses , Animais , Peixe-Zebra , Hematopoese/genética , Rim , Imunidade Adaptativa , Análise de Sequência de RNA , Mamíferos
3.
Small ; 20(3): e2302550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726238

RESUMO

The structural coloration of textiles with bionic photonic crystals (PCs) is expected to become a critical approach to the ecological coloration of textiles. Rapid and large-area preparation of PC structurally colored textiles can be achieved via self-assembly of high mass fractions of liquid photonic crystals (LPCs). However, the rapid and large-scale manufacturing of LPCs remains a challenge. In this work, the pH regulator is added in the process of emulsion polymerization to solve the problem of phase transformation caused by the thermal decomposition of the initiator to produce H+ , directly achieving 40 wt.% PS nanospheres in the dispersion. Then oligomers and small-molecule salts are removed from the system via dialysis, and the pre-crystallized LPC system is efficiently prepared. Adjusting the particle size and the mass fraction of nanospheres is shown to be an efficient way to control the optical properties of LPCs. The rapid and large-area preparation of PC structural color fabric and the patterned PC structural color fabric with an iridescent effect is implemented by using LPCs as the assembly intermediate. By constructing the encapsulation layer on the surface of the PC structural color fabric, the consistency of high structural stability and high color saturation of the PC is realized.

4.
Sci China Life Sci ; 67(3): 488-503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955780

RESUMO

Ferroptosis, a unique type of non-apoptotic cell death resulting from iron-dependent lipid peroxidation, has a potential physiological function in tumor suppression, but its underlying mechanisms have not been fully elucidated. Here, we report that the long non-coding RNA (lncRNA) LncFASA increases the susceptibility of triple-negative breast cancer (TNBC) to ferroptosis. As a tumor suppressor, LncFASA drives the formation of droplets containing peroxiredoxin1 (PRDX1), a member of the peroxidase family, resulting in the accumulation of lipid peroxidation via the SLC7A11-GPX4 axis. Mechanistically, LncFASA directly binds to the Ahpc-TSA domain of PRDX1, inhibiting its peroxidase activity by driving liquid-liquid phase separation, which disrupts intracellular ROS homeostasis. Notably, high LncFASA expression indicates favorable overall survival in individuals with breast cancer, and LncFASA impairs the growth of breast xenograft tumors by modulating ferroptosis. Together, our findings illustrate the crucial role of this lncRNA in ferroptosis-mediated cancer development and provide new insights into therapeutic strategies for breast cancer.


Assuntos
Ferroptose , Neoplasias Mamárias Animais , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Ferroptose/genética , Separação de Fases , RNA Longo não Codificante/genética , Peroxidases , Peroxirredoxinas/genética
5.
Adv Sci (Weinh) ; 11(10): e2303341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145352

RESUMO

High-fat diet (HFD)-induced obesity is a crucial risk factor for metabolic syndrome, mainly due to adipose tissue dysfunctions associated with it. However, the underlying mechanism remains unclear. This study has used genetic screening to identify an obesity-associated human lncRNA LINK-A as a critical molecule bridging the metabolic microenvironment and energy expenditure in vivo by establishing the HFD-induced obesity knock-in (KI) mouse model. Mechanistically, HFD LINK-A KI mice induce the infiltration of inflammatory factors, including IL-1ß and CXCL16, through the LINK-A/HB-EGF/HIF1α feedback loop axis in a self-amplified manner, thereby promoting the adipose tissue microenvironment remodeling and adaptive thermogenesis disorder, ultimately leading to obesity and insulin resistance. Notably, LINK-A expression is positively correlated with inflammatory factor expression in individuals who are overweight. Of note, targeting LINK-A via nucleic acid drug antisense oligonucleotides (ASO) attenuate HFD-induced obesity and metabolic syndrome, pointing out LINK-A as a valuable and effective therapeutic target for treating HFD-induced obesity. Briefly, the results reveale the roles of lncRNAs (such as LINK-A) in remodeling tissue inflammatory microenvironments to promote HFD-induced obesity.


Assuntos
Resistência à Insulina , Síndrome Metabólica , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica
6.
Mar Drugs ; 21(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37755109

RESUMO

Antibodies represent a relatively mature detection means and serve as therapeutic drug carriers in the clinical diagnosis and treatment of cancer-among which monoclonal antibodies (mAbs) currently occupy a dominant position. However, the emergence and development of small-molecule monodomain antibodies are inevitable due to the many limitations of mAbs, such as their large size, complex structure, and sensitivity to extreme temperature, and tumor microenvironments. Thus, since first discovered in Chondroid fish in 1995, IgNAR has become an alternative therapeutic strategy through which to replace monoclonal antibodies, thus entailing that this novel type of immunoglobulin has received wide attention with respect to clinical diagnoses and tumor therapies. The variable new antigen receptor (VNAR) of IgNAR provides an advantage for the development of new antitumor drugs due to its small size, high stability, high affinity, as well as other structural and functional characteristics. In that respect, a better understanding of the unique characteristics and therapeutic potential of IgNAR/VNAR in clinical and anti-tumor treatment is needed. This article reviews the advantages of its unique biochemical conditions and molecular structure for clinical diagnoses and novel anti-tumor drugs. At the same time, the main advantages of the existing conjugated drugs, which are based on single-domain antibodies, are introduced here, thereby providing new ideas and methods for the development of clinical diagnoses and anti-tumor therapies in the future.

7.
J Immunol ; 211(5): 816-835, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486225

RESUMO

Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.


Assuntos
Antígeno B7-H1 , Peixe-Zebra , Humanos , Animais , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Mamíferos , Receptores Imunológicos/metabolismo
8.
ACS Appl Mater Interfaces ; 15(26): 31935-31942, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37341383

RESUMO

Patterned photonic crystals (PCs) have great application potential in the textile field owing to their attractive high-saturation iridescent effect. Herein, based on the idea of resist printing, a novel approach to constructing patterned photonic crystals via screen printing was designed and achieved. A colorless pattern with hydrophilic and hydrophobic difference was firstly prepared by screen printing using a hydrophilic polymer paste printed on a hydrophobic fabric, and then the PC structurally colored pattern was obtained through scrapping liquid photonic crystals (LPCs) on the fabric because the LPCs were spread and assembled in the hydrophilic pattern but resisted in the hydrophobic areas, so that to realize the rapid preparation of patterned PCs on the fabric surface. Once the contact angle difference (ΔCA) between the hydrophilic and hydrophobic areas exceeded 80, the "color paste" (that is, LPCs) did not stain the hydrophobic area at all after scrapping, and the assembled PCs pattern showed good contour sharpness and high-saturation iridescence effect. The complex multistructural color patterns on the fabrics were achieved by adjusting the size of nanospheres and using multistep printing and scrapping. The preparation of the protective layer on the PC surface effectively improved the structural stability of the patterned PCs while retaining the optical properties of the pattern. This patterned PCs preparation method was combined with a conventional responsive substance (rhodamine B) to obtain double anti-counterfeiting patterned PCs with the iridescence effect. The results suggested a promising future in both the highly efficient preparation of patterned PCs and the application of PCs in the anti-counterfeiting field.

9.
FASEB J ; 37(6): e22951, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227178

RESUMO

Teleost fish are indispensable model organisms for comparative immunology research that should lead to an improved understanding of the general principles of vertebrate immune system design. Although numerous studies on fish immunology have been conducted, knowledge about the cell types that orchestrate piscine immune systems remains limited. Here, we generated a comprehensive atlas of immune cell types in zebrafish spleen on the basis of single-cell transcriptome profiling. We identified 11 major categories from splenic leukocyte preparations, including neutrophils, natural killer cells, macrophages/myeloid cells, T cells, B cells, hematopoietic stem and progenitor cells, mast cells, remnants of endothelial cells, erythroid cells, erythroid progenitors, and a new type of serpin-secreting cells. Notably, we derived 54 potential subsets from these 11 categories. These subsets showed differential responses to spring viremia of carp virus (SVCV) infection, implying that they have diverse roles in antiviral immunity. Additionally, we landscaped the populations with the induced expression of interferons and other virus-responsive genes. We found that trained immunity can be effectively induced in the neutrophil and M1-macrophage subsets by vaccinating zebrafish with inactivated SVCV. Our findings illustrated the complexity and heterogeneity of the fish immune system, which will help establish a new paradigm for the improved understanding of fish immunology.


Assuntos
Infecções por Rhabdoviridae , Peixe-Zebra , Animais , Peixe-Zebra/genética , Baço , Células Endoteliais , Perfilação da Expressão Gênica
10.
Nat Commun ; 14(1): 2253, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080959

RESUMO

Iron metabolism dysregulation is tightly associated with cancer development. But the underlying mechanisms remain poorly understood. Increasing evidence has shown that long noncoding RNAs (lncRNAs) participate in various metabolic processes via integrating signaling pathway. In this study, we revealed one iron-triggered lncRNA, one target of YAP, LncRIM (LncRNA Related to Iron Metabolism, also named ZBED5-AS1 and Loc729013), which effectively links the Hippo pathway to iron metabolism and is largely independent on IRP2. Mechanically, LncRIM directly binds NF2 to inhibit NF2-LATS1 interaction, which causes YAP activation and increases intracellular iron level via DMT1 and TFR1. Additionally, LncRIM-NF2 axis mediates cellular iron metabolism dependent on the Hippo pathway. Clinically, high expression of LncRIM correlates with poor patient survival, suggesting its potential use as a biomarker and therapeutic target. Taken together, our study demonstrated a novel mechanism in which LncRIM-NF2 axis facilitates iron-mediated feedback loop to hyperactivate YAP and promote breast cancer development.


Assuntos
Via de Sinalização Hippo , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Proliferação de Células , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
PLoS Pathog ; 19(4): e1011222, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014912

RESUMO

Endogenous retroviruses (ERVs) are the relics of ancient retroviruses occupying a substantial fraction of vertebrate genomes. However, knowledge about the functional association of ERVs with cellular activities remains limited. Recently, we have identified approximately 3,315 ERVs from zebrafish at genome-wide level, among which 421 ERVs were actively expressed in response to the infection of Spring viraemia of carp virus (SVCV). These findings demonstrated the previously unrecognized activity of ERVs in zebrafish immunity, thereby making zebrafish an attractive model organism for deciphering the interplay among ERVs, exogenous invading viruses, and host immunity. In the present study, we investigated the functional role of an envelope protein (Env38) derived from an ERV-E5.1.38-DanRer element in zebrafish adaptive immunity against SVCV in view of its strong responsiveness to SVCV infection. This Env38 is a glycosylated membrane protein mainly distributed on MHC-II+ antigen-presenting cells (APCs). By performing blockade and knockdown/knockout assays, we found that the deficiency of Env38 markedly impaired the activation of SVCV-induced CD4+ T cells and thereby led to the inhibition of IgM+/IgZ+ B cell proliferation, IgM/IgZ Ab production, and zebrafish defense against SVCV challenge. Mechanistically, Env38 activates CD4+ T cells by promoting the formation of pMHC-TCR-CD4 complex via cross-linking MHC-II and CD4 molecules between APCs and CD4+ T cells, wherein the surface subunit (SU) of Env38 associates with the second immunoglobin domain of CD4 (CD4-D2) and the first α1 domain of MHC-IIα (MHC-IIα1). Notably, the expression and functionality of Env38 was strongly induced by zebrafish IFNφ1, indicating that env38 acts as an IFN-stimulating gene (ISG) regulated by IFN signaling. To the best of our knowledge, this study is the first to identify the involvement of an Env protein in host immune defense against an exogenous invading virus by promoting the initial activation of adaptive humoral immunity. It improved the current understanding of the cooperation between ERVs and host adaptive immunity.


Assuntos
Retrovirus Endógenos , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Peixe-Zebra , Imunidade Humoral , Imunoglobulina M , Doenças dos Peixes/genética
13.
Proc Natl Acad Sci U S A ; 120(8): e2206694120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36795754

RESUMO

Notch has been implicated in human cancers and is a putative therapeutic target. However, the regulation of Notch activation in the nucleus remains largely uncharacterized. Therefore, characterizing the detailed mechanisms governing Notch degradation will identify attractive strategies for treating Notch-activated cancers. Here, we report that the long noncoding RNA (lncRNA) BREA2 drives breast cancer metastasis by stabilizing the Notch1 intracellular domain (NICD1). Moreover, we reveal WW domain containing E3 ubiquitin protein ligase 2 (WWP2) as an E3 ligase for NICD1 at K1821 and a suppressor of breast cancer metastasis. Mechanistically, BREA2 impairs WWP2-NICD1 complex formation and in turn stabilizes NICD1, leading to Notch signaling activation and lung metastasis. BREA2 loss sensitizes breast cancer cells to inhibition of Notch signaling and suppresses the growth of breast cancer patient-derived xenograft tumors, highlighting its therapeutic potential in breast cancer. Taken together, these results reveal the lncRNA BREA2 as a putative regulator of Notch signaling and an oncogenic player driving breast cancer metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Pulmonares/genética , Neoplasias da Mama/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo
14.
Aging Dis ; 13(6): 1919-1938, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36465184

RESUMO

Mesenchymal stromal/stem cells (MSCs) have been considered an attractive source of cytotherapy due to their promising effects on treating various diseases. Allogeneic MSCs (allo-MSCs) are extensively used in clinical trials due to their convenient preparation and credible performance. Traditionally, allo-MSCs are considered immunoprivileged with minimal immunogenicity and potent immunomodulatory capacity. However, growing evidence has suggested that allo-MSCs also induce immune response and cause rejection after transplantation, but the underlying cellular and molecular mechanisms remain to be elucidated. Here, we demonstrated that allografted MSCs upregulated MHC-II upon stimulation of IFN-γ in hepatic inflammatory environment by using mouse model of CCl4-induced liver injury. MHC-II upregulation enhanced the immunogenicity of allo-MSCs, leading to the activation of alloreactive T cells and rejection of allo-MSCs. However, MHC-II deficiency impaired the allogenic reactivity, thereby rescuing the loss of allo-MSCs. Mechanistically, CD4+ cytotoxic T lymphocytes (CTLs), rather than CD8+ CTLs, acted as the major effector for allo-MSC rejection. Under liver injury condition, the transplanted allo-MSCs upregulated CD80 and PD-L1, and CD8+ CTLs highly expressed CTLA-4 and PD-1, thereby inducing immune tolerance of CD8+ T cells to allo-MSCs. On the contrary, CD4+ CTLs minimally expressed CTLA-4 and PD-1; thus, they remain cytotoxic to allo-MSCs. Consequently, transplantation of MHC-II-deficient allo-MSCs substantially promoted their therapeutic effects in treating liver injury. This study revealed a novel mechanism of MSC allograft rejection mediated by CD4+ CTLs in injured liver, which provided new strategies for improving clinical performance of allo-MSCs in benefiting hepatic injury repair.

15.
Nat Commun ; 13(1): 6951, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376293

RESUMO

Immune checkpoint blockade therapies targeting the PD-L1/PD-1 axis have demonstrated clear clinical benefits. Improved understanding of the underlying regulatory mechanisms might contribute new insights into immunotherapy. Here, we identify transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) as a modulator of PD-L1 post-translational modifications in tumor cells. Mechanistically, TMUB1 competes with HECT, UBA and WWE domain-containing protein 1 (HUWE1), a E3 ubiquitin ligase, to interact with PD-L1 and inhibit its polyubiquitination at K281 in the endoplasmic reticulum. Moreover, TMUB1 enhances PD-L1 N-glycosylation and stability by recruiting STT3A, thereby promoting PD-L1 maturation and tumor immune evasion. TMUB1 protein levels correlate with PD-L1 expression in human tumor tissue, with high expression being associated with poor patient survival rates. A synthetic peptide engineered to compete with TMUB1 significantly promotes antitumor immunity and suppresses tumor growth in mice. These findings identify TMUB1 as a promising immunotherapeutic target.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Glicosilação , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Evasão Tumoral , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
ACS Omega ; 7(44): 39750-39759, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385851

RESUMO

Structural coloration of photonic crystals (PCs) is considered an ecological and environmental way to achieve colorful textiles. However, constructing PCs with obvious structural colors on traditional flexible yarns is still a great challenge. As a secondary structure that forms textiles, compared with fibers and fabrics, the yarns are rougher, hindering the construction of regular PCs. In this work, the flexible acrylic yarns with vivid structural colors, named PC-based structural color yarns, were prepared by constructing regular PCs via assembling poly(styrene-butyl acrylate-methacrylate) (P(St-BA-MAA)) colloidal microspheres on yarns. Specifically, the properties of P(St-BA-MAA) colloidal microspheres were investigated. The PCs with better structural stability and obvious structural colors were prepared by presetting the acrylic adhesive layer on yarns. Moreover, the color durability and color regulation methods of prepared PC-based structural color yarns were evaluated and discussed. The results showed that the P(St-BA-MAA) colloidal microspheres exhibited even particle sizes, excellent monodispersity, and a typical hard core-soft shell structure. And the glass-transition temperature (T g) of the microspheres was tested to be about 65.6 °C. The cationic acrylate regarded as a pretreatment agent could not only improve the combination between the PC layers and the yarns by acting as a "bridge" but also enhance the structural color effect by smoothing the yarn surface. The results showed that when the mass fraction of cationic acrylate was 3 wt %, the microspheres were beneficial to access regular PCs with obvious structural colors. The PCs with bright structural colors could be constructed on black acrylic yarns, and the colors of yarns were still bright after rubbing and washing tests, indicating that the prepared PC-based structural color yarns have good color fastness. Moreover, the color hue of PC-based structural color yarns could be regulated by adjusting the particle sizes and viewing angles. This study provides strategic support for the structural coloration of flexible materials.

17.
Front Bioeng Biotechnol ; 10: 899182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061422

RESUMO

Anthocyanins are natural pigments found in various plants. As multifunctional natural compounds, anthocyanins are widely used in food, pharmaceuticals, health products, and cosmetics. At present, the anthocyanins are heterologously biosynthesized in prokaryotes from flavan-3-ols, which is rather expensive. This study aimed to metabolically engineer Saccharomyces cerevisiae for anthocyanin production. Anthocyanin production has been extensively studied to understand the metabolic pathway enzymes in their natural hosts, including CHS (chalcone synthase); FLS (flavonol synthase); CHI (chalcone isomerase); F3H (flavanone 3-hydroxylase); F3'H (flavonoid 3'-hydroxylase); F3'5'H (flavonoid 3',5'-hydroxylase); DFR (dihydroflavonol 4-reductase); ANS (anthocyanidin synthase); LAR (leucoanthocyanidin reductase); and UFGT (flavonoid 3-O-glucosyltransferase). The anthocyanin transporter MdGSTF6 was first introduced and proven to be indispensable for the biosynthesis of anthocyanins. By expressing MdGSTF6, FaDFR, PhANS0, and Dc3GT and disrupting EXG1 (the main anthocyanin-degrading enzyme), the BA-22 strain produced 261.6 mg/L (254.5 mg/L cyanidin-3-O-glucoside and 7.1 mg/L delphinidin-3-O-glucoside) anthocyanins from 2.0 g/L dihydroflavonols, which was known to be the highest titer in eukaryotes. Finally, 15.1 mg/L anthocyanins was obtained from glucose by expressing the de novo biosynthesis pathway in S. cerevisiae, which is known to be the highest de novo production. It is the first study to show that through the introduction of a plant anthocyanin transporter and knockout of a yeast endogenous anthocyanin degrading enzyme, the anthocyanin titer has been increased by more than 100 times.

19.
Nat Metab ; 4(8): 1022-1040, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35995997

RESUMO

Cholesterol contributes to the structural basis of biological membranes and functions as a signaling molecule, whose dysregulation has been associated with various human diseases. Here, we report that the long non-coding RNA (lncRNA) SNHG6 increases progression from non-alcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) by modulating cholesterol-induced mTORC1 activation. Mechanistically, cholesterol binds ER-anchored FAF2 protein to promote the formation of a SNHG6-FAF2-mTOR complex. As a putative cholesterol effector, SNHG6 enhances cholesterol-dependent mTORC1 lysosomal recruitment and activation via enhancing FAF2-mTOR interaction at ER-lysosome contacts, thereby coordinating mTORC1 kinase cascade activation with cellular cholesterol biosynthesis in a self-amplified cycle to accelerate cholesterol-driven NAFLD-HCC development. Notably, loss of SNHG6 inhibits mTORC1 signaling and impairs growth of patient-derived xenograft liver cancer tumors, identifyifng SNHG6 as a potential target for liver cancer treatment. Together, our findings illustrate the crucial role of organelle-associated lncRNA in organelle communication, nutrient sensing, and kinase cascades.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , RNA Longo não Codificante/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Colesterol , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , RNA Longo não Codificante/metabolismo
20.
J Virol ; 96(16): e0079122, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35913215

RESUMO

Spring viremia of carp virus (SVCV) is a severe infectious pathogen that causes high rates of mortality in cyprinids and other fish species. Despite numerous investigations of SVCV infection, the underlying molecular mechanisms remain poorly understood. In this study, we found that the SVCV matrix protein (SVCV-M) played an inhibitory role in the host interferon (IFN) response by targeting the MAVS/TRAF3 signaling axis, thereby uncovering a previously unrecognized mechanism of SVCV escape from host innate antiviral immunity. Mechanistically, SVCV-M was located at the mitochondria independent of MAVS, which allowed SVCV-M to build an arena for competition with the MAVS platform. A microscale thermophoresis assay showed that SVCV-M had a high affinity for TRAF3, as indicated by a lower equilibrium dissociation constant (KD) value than that of MAVS with TRAF3. Therefore, the association of MAVS with TRAF3 was competitively impaired by SVCV-M in a dose-dependent manner. Accordingly, SVCV-M showed a potent ability to inhibit the K63-linked polyubiquitination of TRAF3. This inhibition was accompanied by the impairment of the IFN response, as shown by the marked decline in IFN-φ1-promoter (pro) luciferase reporter activity. By constructing truncated TRAF3 and SVCV-M proteins, the RING finger, zinc finger, and coiled-coil domains of TRAF3 and the hydrophobic-pocket-like structure formed by the α2-, α3-, and α4-helices of SVCV-M may be the major target and antagonistic modules responsible for the protein-protein interaction between the TRAF3 and SVCV-M proteins. These findings highlighted the intervention of SVCV-M in host innate immunity, thereby providing new insights into the extensive participation of viral matrix proteins in multiple biological activities. IMPORTANCE The matrix protein of SVCV (SVCV-M) is an indispensable structural element for nucleocapsid condensation and virion formation during viral morphogenesis, and it connects the core nucleocapsid particle to the outer membrane within the mature virus. Previous studies have emphasized the architectural role of SVCV-M in viral construction; however, the potential nonstructural functions of SVCV-M in viral replication and virus-host interactions remain poorly understood. In this study, we identified the inhibitory role of the SVCV-M protein in host IFN production by competitively recruiting TRAF3 from the MAVS signaling complex and impairing TRAF3 activation via inhibition of K63-linked polyubiquitination. This finding provided new insights into the regulatory role of SVCV-M in host innate immunity, which highlighted the broader functionality of rhabdovirus matrix protein apart from being a structural protein. This study also revealed a previously unrecognized mechanism underlying SVCV immune evasion by inhibiting the IFN response by targeting the MAVS/TRAF3 signaling axis.


Assuntos
Carpas , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Imunidade Inata , Interferons/metabolismo , Infecções por Rhabdoviridae/imunologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Proteínas da Matriz Viral/metabolismo , Viremia/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA