Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777621

RESUMO

Skin tissue engineering (STE) is widely regarded as an effective approach for skin regeneration. Several synthetic biomaterials utilized for STE have demonstrated favorable fibrillar characteristics, facilitating the regeneration of skin tissue at the site of injury, yet they have exhibited a lack of in situ degradation. Various types of skin regenerative materials, such as hydrogels, nanofiber scaffolds, and 3D-printing composite scaffolds, have recently emerged for use in STE. Electrospun nanofiber scaffolds possess distinct advantages, such as their wide availability, similarity to natural structures, and notable tissue regenerative capabilities, which have garnered the attention of researchers. Hence, electrospun nanofiber scaffolds may serve as innovative biological materials possessing the necessary characteristics and potential for use in tissue engineering. Recent research has demonstrated the potential of electrospun nanofiber scaffolds to facilitate regeneration of skin tissues. Nevertheless, there is a need to enhance the rapid degradation and limited mechanical properties of electrospun nanofiber scaffolds in order to strengthen their effectiveness in soft tissue engineering applications in clinical settings. This Review centers on advanced research into electrospun nanofiber scaffolds, encompassing preparation methods, materials, fundamental research, and preclinical applications in the field of science, technology, and engineering. The existing challenges and prospects of electrospun nanofiber scaffolds in STE are also addressed.

2.
Nat Commun ; 14(1): 5621, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699949

RESUMO

Electrooxidation of biomass platforms provides a sustainable route to produce valuable oxygenates, but the practical implementation is hampered by the severe carbon loss stemming from inherent instability of substrates and/or intermediates in alkaline electrolyte, especially under high concentration. Herein, based on the understanding of non-Faradaic degradation, we develop a single-pass continuous flow reactor (SPCFR) system with high ratio of electrode-area/electrolyte-volume, short duration time of substrates in the reactor, and separate feeding of substrate and alkaline solution, thus largely suppressing non-Faradaic degradation. By constructing a nine-stacked-modules SPCFR system, we achieve electrooxidation of glucose-to-formate and 5-hydroxymethylfurfural (HMF)-to-2,5-furandicarboxylic acid (FDCA) with high single-pass conversion efficiency (SPCE; 81.8% and 95.8%, respectively) and high selectivity (formate: 76.5%, FDCA: 96.9%) at high concentrations (formate: 562.8 mM, FDCA: 556.9 mM). Furthermore, we demonstrate continuous and kilogram-scale electrosynthesis of potassium diformate (0.7 kg) from wood and soybean oil, and FDCA (1.17 kg) from HMF. This work highlights the importance of understanding and suppressing non-Faradaic degradation, providing opportunities for scalable biomass upgrading using electrochemical technology.

3.
ACS Appl Mater Interfaces ; 15(19): 23265-23275, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37146267

RESUMO

Electrocatalytic oxidation of glycerol (GLY; from a biodiesel byproduct) to lactic acid (LA; the key monomers for polylactic acid; PLA) is considered a sustainable approach for biomass waste upcycling and is coupled with cathodic hydrogen (H2) production. However, current research still suffer from issues of low current density and low LA selectivity. Herein, we reported a photoassisted electrocatalytic strategy to achieve the selective oxidation of GLY to LA over a gold nanowire (Au NW) catalyst, attaining a high current density of 387 mA cm-2 at 0.95 V vs RHE, together with a high LA selectivity of 80%, outperforming most of the reported works in the literature. We reveal that the light-assistance strategy plays a dual role, which can both accelerate the reaction rate through the photothermal effect and also promote the adsorption of the middle hydroxyl of GLY over Au NWs to realize the selective oxidation of GLY to LA. As a proof-of-concept, we realized the direct conversion of crude GLY that was extracted from cooking oil to attain LA and coupled it with H2 production using the developed photoassisted electrooxidation process, revealing the potential of this strategy in practical applications.

4.
Small ; 19(38): e2301874, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37196419

RESUMO

The practical application of aqueous zinc batteries are highly limited by unsatisfied Zn anodes for the unavoidable dendrite growth and side reactions. Crystal orientation engineering is an effective way to overcome these inherent drawbacks. However, how to achieve Zn plating with manipulated crystallographic orientation is still a great challenge. Herein, a uniform (002)-oriented Zn metal anode is reported based on a directional cation recognition and crystal assembly strategy. The activated layered double hydroxide (Act-LDH) exhibits favorable adsorption energy with Zn2+ and high lattice matching with Zn (002) plane, which can be served as directional recognition layer to anchor Zn2+ and regulate crystallographic orientation of Zn as well. As demonstration, Zn crystals with ultrahigh ratio of (002)/(100) plane of 15.7 are assembled parallelly on horizontal Act-LDH, in which high CE of 99.85% maintains over 18 000 cycles. The symmetric battery with (002)-oriented Zn shows stable plating/stripping process over 1650 and 420 h at 1 mA cm-2 /0.5 mA h cm-2 and 10 mA cm-2 /5 mA h cm-2 , respectively, which is 9 and 12 times higher than unoriented polycrystalline Zn. Moreover, as-assembled full battery displays high specific capacity of 120 mA h g-1 at 2 A g-1 over 1800 cycles.

5.
STAR Protoc ; 4(2): 102311, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37182204

RESUMO

Photoelectrocatalytic (PEC) strategy has emerged as a promising approach to drive organic reactions under mild conditions. Here, we present a protocol for PEC oxidative coupling of aromatic amines to produce aromatic azo compounds over a porous BiVO4 nanoarray (BiVO4-NA) photoanode. We describe the fabrication of BiVO4-NA photoanode and the detailed steps for the PEC oxidative coupling reaction, including key performance data of the BiVO4-NA photoanode for synthesizing azobenzene from aniline. For complete details on the use and execution of this protocol, please refer to Luo et al. (2022).1.

6.
ACS Appl Mater Interfaces ; 15(10): 13176-13185, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868558

RESUMO

Electrocatalytic hydrogenation (ECH) of oxalic acid (OX) to produce glycolic acid (GA), an important building block of biodegradable polymers as well as application in various branches of chemistry, has attracted extensive attention in the industry, while it still encounters challenges of low reaction rate and selectivity. Herein, we reported a cation adsorption strategy to realize the efficient ECH of OX to GA by adsorbing Al3+ ions on an anatase titanium dioxide (TiO2) nanosheet array, achieving 2-fold enhanced GA productivity (1.3 vs 0.65 mmol cm-2 h-1) with higher Faradaic efficiency (FE) (85 vs 69%) at -0.74 V vs RHE. We reveal that the Al3+ adatoms on TiO2 both act as electrophilic adsorption sites to enhance the carbonyl (C═O) adsorption of OX and glyoxylic acid (intermediate) and also promote the generation of reactive hydrogen (H*) on TiO2, thus promoting the reaction rate. This strategy is demonstrated effective for different carboxylic acids. Furthermore, we realized the coproduction of GA at the bipolar of a H-type cell by pairing ECH of OX (at cathode) and electrooxidation of ethylene glycol (at anode), demonstrating an economical manner with maximum electron economy.

7.
J Am Chem Soc ; 145(11): 6144-6155, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36800212

RESUMO

Transformation of biomass and plastic wastes to value-added chemicals and fuels is considered an upcycling process that is beneficial to resource utilization. Electrocatalysis offers a sustainable approach; however, it remains a huge challenge to increase the current density and deliver market-demanded chemicals with high selectivity. Herein, we demonstrate an electrocatalytic strategy for upcycling glycerol (from biodiesel byproduct) to lactic acid and ethylene glycol (from polyethylene terephthalate waste) to glycolic acid, with both products being as valuable monomers for biodegradable polymer production. By using a nickel hydroxide-supported gold electrocatalyst (Au/Ni(OH)2), we achieve high selectivities of lactic acid and glycolic acid (77 and 91%, respectively) with high current densities at moderate potentials (317.7 mA/cm2 at 0.95 V vs RHE and 326.2 mA/cm2 at 1.15 V vs RHE, respectively). We reveal that glycerol and ethylene glycol can be enriched at the Au/Ni(OH)2 interface through their adjacent hydroxyl groups, substantially increasing local concentrations and thus high current densities. As a proof of concept, we employed a membrane-free flow electrolyzer for upcycling triglyceride and PET bottles, attaining 11.2 g of lactic acid coupled with 9.3 L of H2 and 13.7 g of glycolic acid coupled with 9.4 L of H2, respectively, revealing the potential of coproduction of valuable chemicals and H2 fuel from wastes in a sustainable fashion.

8.
Angew Chem Int Ed Engl ; 62(15): e202219048, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807450

RESUMO

Transition-metal-based oxyhydroxides are efficient catalysts in biomass electrooxidation towards fossil-fuel-free production of valuable chemicals. However, identification of active sites remains elusive. Herein, using cobalt oxyhydroxide (CoOOH) as the archetype and the electrocatalyzed glucose oxidation reaction (GOR) as the model reaction, we track dynamic transformation of the electronic and atomic structure of the catalyst using a suite of operando and ex situ techniques. We reveal that two types of reducible Co3+ -oxo species are afforded for the GOR, including adsorbed hydroxyl on Co3+ ion (µ1 -OH-Co3+ ) and di-Co3+ -bridged lattice oxygen (µ2 -O-Co3+ ). Moreover, theoretical calculations unveil that µ1 -OH-Co3+ is responsible for oxygenation, while µ2 -O-Co3+ mainly contributes to dehydrogenation, both as key oxidative steps in glucose-to-formate transformation. This work provides a framework for mechanistic understanding of the complex near-surface chemistry of metal oxyhydroxides in biomass electrorefining.

9.
Adv Sci (Weinh) ; 10(8): e2206479, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646523

RESUMO

Room temperature liquid NaK alloy is a promising candidate for high performance metal batteries, due to its dendrite-free property and high energy density. However, its practical application is hindered by the high surface tension of liquid NaK, which causes difficulties in maintaining a stable contact with a current collector. Here, the authors demonstrate the extraordinary stable confinement of NaK alloy at room temperature by constructing a super-wetting substrate, which is based on highly dispersed cobalt-single-atom carbon nanoarrays. The developed liquid anode electrode prevented successfully the leakage of NaK alloy even in harsh stress (>5 MPa) or sharp shock conditions. The symmetric cells achieved ultra-long reversible plating/stripping cycling life in both Na-ion (>1010 hrs) and K-ion electrolytes (>4000 hrs) at 10 mA cm-2 /10 mAh cm-2 . Upon fitting with Na3 V2 (PO4 )3 , the NaK assembled full battery provided high energy density (332.6 kWh kg-1 ) and power density (11.05 kW kg-1 ) with excellent stability after >21600 cycles, which is the best value reported so far. The prepared pouch cell was able to drive a four-axis aircraft, demonstrating a great prospect in practical application. This work offers a new approach in the preparation of advanced dendrite-free liquid metal anodes with promising applications in electrochemical energy storage.

10.
Nat Commun ; 13(1): 7958, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575160

RESUMO

Electrochemical nitrate reduction to ammonia is a promising alternative strategy to the traditional Haber-Bosch process but suffers from a low Faradaic efficiency and limited ammonia yield due to the sluggish multi-electron/proton-involved steps. Herein, we report a typical hollow cobalt phosphide nanosphere electrocatalyst assembled on a self-supported carbon nanosheet array synthesized with a confinement strategy that exhibits an extremely high ammonia yield rate of 8.47 mmol h-1 cm-2 through nitrate reduction reaction, which is highly superior to previously reported values to our knowledge. In situ experiments and theoretical investigations reveal that the dynamic equilibrium between the generation of active hydrogen on cobalt phosphide and its timely consumption by nitrogen intermediates leads to a superior ammonia yield with a high Faradaic efficiency. This unique insight based on active hydrogen equilibrium provides new opportunities for large-scale ammonia production through electrochemical techniques and can be further used for carbon dioxide capture.

11.
Nat Commun ; 13(1): 5009, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008416

RESUMO

Adipic acid is an important building block of polymers, and is commercially produced by thermo-catalytic oxidation of ketone-alcohol oil (a mixture of cyclohexanol and cyclohexanone). However, this process heavily relies on the use of corrosive nitric acid while releases nitrous oxide as a potent greenhouse gas. Herein, we report an electrocatalytic strategy for the oxidation of cyclohexanone to adipic acid coupled with H2 production over a nickel hydroxide (Ni(OH)2) catalyst modified with sodium dodecyl sulfonate (SDS). The intercalated SDS facilitates the enrichment of immiscible cyclohexanone in aqueous medium, thus achieving 3.6-fold greater productivity of adipic acid and higher faradaic efficiency (FE) compared with pure Ni(OH)2 (93% versus 56%). This strategy is demonstrated effective for a variety of immiscible aldehydes and ketones in aqueous solution. Furthermore, we design a realistic two-electrode flow electrolyzer for electrooxidation of cyclohexanone coupling with H2 production, attaining adipic acid productivity of 4.7 mmol coupled with H2 productivity of 8.0 L at 0.8 A (corresponding to 30 mA cm-2) in 24 h.

12.
J Am Med Inform Assoc ; 29(4): 619-625, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289369

RESUMO

OBJECTIVE: The objective was to develop and operate a cloud-based federated system for managing, analyzing, and sharing patient data for research purposes, while allowing each resource sharing patient data to operate their component based upon their own governance rules. The federated system is called the Biomedical Research Hub (BRH). MATERIALS AND METHODS: The BRH is a cloud-based federated system built over a core set of software services called framework services. BRH framework services include authentication and authorization, services for generating and assessing findable, accessible, interoperable, and reusable (FAIR) data, and services for importing and exporting bulk clinical data. The BRH includes data resources providing data operated by different entities and workspaces that can access and analyze data from one or more of the data resources in the BRH. RESULTS: The BRH contains multiple data commons that in aggregate provide access to over 6 PB of research data from over 400 000 research participants. DISCUSSION AND CONCLUSION: With the growing acceptance of using public cloud computing platforms for biomedical research, and the growing use of opaque persistent digital identifiers for datasets, data objects, and other entities, there is now a foundation for systems that federate data from multiple independently operated data resources that expose FAIR application programming interfaces, each using a separate data model. Applications can be built that access data from one or more of the data resources.


Assuntos
Pesquisa Biomédica , Computação em Nuvem , Humanos , Software
13.
J Am Chem Soc ; 144(17): 7720-7730, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35352954

RESUMO

Photoelectrocatalytic (PEC) glycerol oxidation offers a sustainable approach to produce dihydroxyacetone (DHA) as a valuable chemical, which can find use in cosmetic, pharmaceutical industries, etc. However, it still suffers from the low selectivity (≤60%) that substantially limits the application. Here, we report the PEC oxidation of glycerol to DHA with a selectivity of 75.4% over a heterogeneous photoanode of Bi2O3 nanoparticles on TiO2 nanorod arrays (Bi2O3/TiO2). The selectivity of DHA can be maintained at ∼65% under a relatively high conversion of glycerol (∼50%). The existing p-n junction between Bi2O3 and TiO2 promotes charge transfer and thus guarantees high photocurrent density. Experimental combined with theoretical studies reveal that Bi2O3 prefers to interact with the middle hydroxyl of glycerol that facilitates the selective oxidation of glycerol to DHA. Comprehensive reaction mechanism studies suggest that the reaction follows two parallel pathways, including electrophilic OH* (major) and lattice oxygen (minor) oxidations. Finally, we designed a self-powered PEC system, achieving a DHA productivity of 1.04 mg cm-2 h-1 with >70% selectivity and a H2 productivity of 0.32 mL cm-2 h-1. This work may shed light on the potential of PEC strategy for biomass valorization toward value-added products via PEC anode surface engineering.


Assuntos
Di-Hidroxiacetona , Glicerol , Adsorção , Catálise , Di-Hidroxiacetona/metabolismo , Glicerol/metabolismo , Radical Hidroxila , Oxirredução
14.
Nat Commun ; 13(1): 147, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013339

RESUMO

Electrochemical alcohols oxidation offers a promising approach to produce valuable chemicals and facilitate coupled H2 production. However, the corresponding current density is very low at moderate cell potential that substantially limits the overall productivity. Here we report the electrooxidation of benzyl alcohol coupled with H2 production at high current density (540 mA cm-2 at 1.5 V vs. RHE) over a cooperative catalyst of Au nanoparticles supported on cobalt oxyhydroxide nanosheets (Au/CoOOH). The absolute current can further reach 4.8 A at 2.0 V in a more realistic two-electrode membrane-free flow electrolyzer. Experimental combined with theoretical results indicate that the benzyl alcohol can be enriched at Au/CoOOH interface and oxidized by the electrophilic oxygen species (OH*) generated on CoOOH, leading to higher activity than pure Au. Based on the finding that the catalyst can be reversibly oxidized/reduced at anodic potential/open circuit, we design an intermittent potential (IP) strategy for long-term alcohol electrooxidation that achieves high current density (>250 mA cm-2) over 24 h with promoted productivity and decreased energy consumption.

15.
Small Methods ; 6(1): e2101324, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041290

RESUMO

Single-atom catalysts (SACs) exhibit intriguing performance in electrocatalysis owing to their maximized atom utilizations and unique electronic structures, but effective anchoring metal atoms with defined coordination structure on hierarchical integrated electrode remain a challenge. Herein, a fast and facial flame-assisted strategy is developed to construct oxygen-coordinated SACs on integrated carbon nanotube (CNT) arrays with promising applications in electrocatalysis. Density functional theory calculations show that oxygen in carbon substrate imparts homogeneous sites for the efficient anchoring of metal atoms, thereby enabling SACs to disperse uniformly and firmly and thus bringing optimized activities. Moreover, the integrated CNT array with abundant oxygen-containing groups is constructed and has been used as an efficient matrix for anchoring metal atoms (CNT-O@M) via a flame-assisted method. The as-prepared CNT-O@M (M = Co and Pt as typical examples) shows excellent activities in electrocatalytic oxygen reduction reaction and hydrogen evolution reaction with utilization of active site as high as 75.7%, which is superior to the reported SACs. Particularly, the performance of CNT-O@M can maintain stably under various harsh conditions, showing a promising prospect in the long-time applications. The methodology and concept proposed in this work could be extended to the synthesis of a variety of integrated SACs for efficient electrocatalysis.

16.
Dalton Trans ; 50(48): 17911-17919, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34781334

RESUMO

TiO2-based nanosheet materials with a core-shell structure are expected to be one of the promising photocatalysts for the degradation of organic pollution. It is a challenge to synthesize TiO2 by the desired nucleation and growth process, so most reported TiO2 core-shell photocatalysts are prepared using TiO2 as a core material. Layered double hydroxides (LDHs) are considered ideal platforms to grow TiO2in situ and further serve as additional components to improve the separation of photogenerated charge carriers. In this work, we report the design and fabrication of anatase TiO2-coated ZnAl-layered double oxide (LDO@TiO2) nanosheets, which involve the in situ growth of TiO2 on ZnAl-LDH followed by subsequent calcination treatment. The resulting LDO@TiO2 photocatalyst yields typical core-shell nanosheet morphology with a mesoporous structure, exhibiting excellent photodegradation and mineralization efficiency for organic pollution.

17.
Small ; 17(28): e2100722, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117707

RESUMO

Aqueous zinc metal batteries (AZMBs) have drawn great attention due to the high theoretical capacity, low redox potential, and abundance reserves. However, the practical application of rechargeable AZMBs are hindered by the poor reversibility of Zn metal anode, owing to easy dendrite growth and serious side reactions. Herein, the preparation of heterogeneous interfacial film with highly dispersed and confined zinc salt in a 2D channel by coassembling polyamide 6, zinc trifluoromethanesulfonate, and layered double hydroxides, which significantly suppresses the dendrite formation, H2 evolution reaction as well as O2 corrosion is reported. The as-developed Zn anodes exhibit a long cycling life up to 1450 h with low reversible deposition potential. Moreover, the assembled Zn||Mn battery delivers a high initial capacity of 321 mAh g-1 and a low capacity decay of ≈0.05% per cycle after 590 cycles, which is promising for high-performance AZMBs. A fluorescent film to realize the in situ observation of the Zn anode during cycling, which provides a new chance for visual observation of the working state of the Zn interface, is also assembled.

18.
Exploration (Beijing) ; 1(3): 20210050, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37323686

RESUMO

Hydrogen production via electrochemical water splitting is one of the most green and promising ways to produce clean energy and address resource crisis, but still suffers from low efficiency and high cost mainly due to the sluggish oxygen evolution reaction (OER) process. Alternatively, electrochemical hydrogen-evolution coupled with alternative oxidation (EHCO) has been proposed as a considerable strategy to improve hydrogen production efficiency combined with the production of high value-added chemicals. Although with these merits, high-efficient electrocatalysts are always needed in practical operation. Typically, layered double hydroxides (LDHs) have been developed as a large class of advanced electrocatalysts toward both OER and EHCO with high efficiency and stability. In this review, we have summarized the latest progress of hydrogen production from the perspectives of designing efficient LDHs-based electrocatalysts for OER and EHCO. Particularly, the influence of structure design and component regulation on the efficiency of their electrocatalytic process have been discussed in detail. Finally, we look forward to the challenges in the field of hydrogen production via electrochemical water splitting coupled with organic oxidation, such as the mechanism, selected oxidation as well as system design, hoping to provide certain inspiration for the development of low-cost hydrogen production technology.

19.
Nanoscale ; 13(1): 15-35, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325951

RESUMO

Lithium-sulfur (Li-S) batteries have shown great application prospects as next-generation energy storage systems due to their high theoretical capacity and high energy density. However, the practical application of Li-S batteries is still hindered by several challenges, such as their sluggish sulfur redox kinetics and shuttle effect of lithium polysulfides (LiPSs). To date, significant research has been focused on the confinement adsorption and catalytic conversion of LiPSs using theoretical or/and experimental methods. Among them, theoretical calculations are highly attractive to observe complex LiPS conversion reactions, which facilitate the rational design of S mediators for high-performance Li-S batteries. In this review, we summarize and discuss the recent advances in the adsorption and conversion of LiPSs from the viewpoint of theoretical calculations. Moreover, a set of theoretical principles to guide the screening of suitable host materials for Li-S batteries is presented and discussed. Finally, some personal insights about the future challenges and the focus of research in this field are presented, which will push a milestone step toward high-efficiency and long-life Li-S batteries.

20.
Angew Chem Int Ed Engl ; 60(13): 7382-7388, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33319448

RESUMO

The development of efficient electrocatalysts for the CO2 reduction reaction (CO2 RR) remains a challenge. Demonstrated here is a NiSn atomic-pair electrocatalyst (NiSn-APC) on a hierarchical integrated electrode, which exhibits a synergistic effect in simultaneously promoting the activity and selectivity of the CO2 RR to formate. The NiSn atomic pair consists of adjacent Ni and Sn, each coordinated with four nitrogen atoms (N4 -Ni-Sn-N4 ). The as-prepared NiSn-APC displays exceptional activity for the CO2 RR to formate with a turnover frequency of 4752 h-1 , a formate productivity of 36.7 mol h-1 gSn -1 and an utilization degree of active sites (57.9 %), which are superior to previously reported single-atomic catalysts. Both experimental data and density-functional theory calculations verify the electron redistribution of Sn imposed by adjacent Ni, which reduces the energy barrier of the *OCHO intermediate and makes this potential-determining step thermodynamically spontaneous. This synergistic catalysis provides a successful paradigm for rational design and preparation of atomic-pair electrocatalysts with enhanced performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA