Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 19(26): e2207808, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942684

RESUMO

Optimizing the coordination structure and microscopic reaction environment of isolated metal sites is promising for boosting catalytic activity for electrocatalytic CO2 reduction reaction (CO2 RR) but is still challenging to achieve. Herein, a newly electrostatic induced self-assembly strategy for encapsulating isolated Ni-C3 N1 moiety into hollow nano-reactor as I-Ni SA/NHCRs is developed, which achieves FECO  of 94.91% at -0.80 V, the CO partial current density of ≈-15.35 mA cm-2 , superior to that with outer Ni-C2 N2 moiety (94.47%, ≈-12.06 mA cm-2 ), or without hollow structure (92.30%, ≈-5.39 mA cm-2 ), and high FECO of ≈98.41% at 100 mA cm-2 in flow cell. COMSOL multiphysics finite-element method and density functional theory (DFT) calculation illustrate that the excellent activity for I-Ni SA/NHCRs should be attributed to the structure-enhanced kinetics process caused by its hollow nano-reactor structure and unique Ni-C3 N1 moiety, which can enrich electron on Ni sites and positively shift d-band center to the Fermi level to accelerate the adsorption and activation of CO2 molecule and *COOH formation. Meanwhile, this strategy also successfully steers the design of encapsulating isolated iron and cobalt sites into nano-reactor, while I-Ni SA/NHCRs-based zinc-CO2 battery assembled with a peak power density of 2.54 mW cm--2 is achieved.

2.
J Colloid Interface Sci ; 624: 88-99, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660914

RESUMO

Designing highly efficient, long-lasting, and cost-effective cathodic and anodic functional materials as a bifunctional electrocatalyst is essential for overcoming the bottleneck in fuel cell development. Herein, a novel two-step synthesis strategy is developed to synthesize metal-organic framework (MOF) derived nitrogen-doped carbon (NC) with improved spatial isolation and a higher loading amount of cobalt (Co) and nickel carbide (Ni3C) nanocrystal decorated on graphene (denoted as Co@NC-Ni3C/G). Benefiting from multiple active sites of high N-doping level, uniform dispersion of Co and Ni3C nanocrystals, and a large active area of graphene, the Co@NC-Ni3C/G hybrids exhibit excellent methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) efficiency in an alkaline environment. For MOR, the optimized Co@NC-Ni3C/G-350 catalyst achieved a current density of 44.8 mA cm-2 at an applied potential of 1.47 V (V vs. RHE), which is significantly higher than Co@NC-Ni3C (42.07 mA cm-2) and Co@NC (24.1 mA cm-2) in 0.5 M methanol + 1.0 M KOH solutions. In addition, during the CO retention test, the Co@NC-Ni3C/G-350 catalyst exhibits excellent CO tolerance capacity. Excitingly, the as-prepared Co@NC-Ni3C/G-350 hybrid exhibits significantly improved ORR catalytic efficiency in terms of positive onset and half-wave potential (Eonset = 0.90 V, E1/2 = 0.830 V vs. RHE), small Tafel slope (34 mV dec-1) and excellent durability (only reduced 0.016 V after 5000 s test). This work provides new insights into MOF-derived functional nanomaterials for anode and cathode co-catalysts for methanol fuel cells.

3.
J Colloid Interface Sci ; 590: 164-174, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548600

RESUMO

Interaction of multi-active components can effectively maximize the overall catalytic ability of alcohol fuel cells. Herein, the self-assembled nitrogen doped carbon nanotubes (NCNTs) containing Co-MnO composite (Co-MnO/NCNTs) are successfully synthesized using dihydrodiamine as carbon and nitrogen source through one-step synthesis. In order to further improve the catalytic activity of Co-MnO/NCNTs for alcohol oxidation, small amounts of platinum quantum dots are uniformly loaded on Co-MnO/NCNTs formation of quaternary hybrid (named Pt/Co-MnO/NCNTs) during microwave reduction stage. Notably, the prepared Pt/Co-MnO/NCNTs hybrids possess the excellent methanol and ethanol oxidation mass current density of 1775.4 and 1112.8 mA mg-1 in alkaline condition, which are 3.6 and 2.25 times higher than that of Pt/C catalysts, respectively. The current density of ethanol catalytic oxidation is lower than that of methanol, which may be due to the partial oxidation of acetyl (the intermediate product of ethanol) on the Pt (1 1 1) crystal surface. More importantly, CO oxidation experiments reveal that strong electronic synergistic effect between MnO and Pt quantum dot can greatly improve the CO anti-poisoning ability. Another significant advantage of Pt/Co-MnO/NCNTs is that low platinum loading leads to low cost effective, which demonstrates that the modification non-noble metal catalysts with a few noble metals quantum dots is a promising choice to mass produce high performance catalyst with remarkably boosting electrocatalytic activity for alcohol oxidation.

4.
J Colloid Interface Sci ; 584: 418-428, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33080502

RESUMO

Herein, the ultra-thin layer MoS2 coverd MoO2 nanocrystal arraying on sulfur-doped graphene framework (MoS2-MoO2/3DSG) is obtained via a simple hydrothermal procedure accompanied with high temperature annealing. Sodium thiosulfate and ethanethiol are used as sulfur sources to form three-dimensional sulfur doped graphene (3DSG) in the hydrothermal process. Importantly, MoO2 nano-particles are uniformly loaded on MoS2 nanosheets and 3DSG via in-situ collaborative technology. As a result, the stable conductive network take full use of the characteristics of high specific capacitance of MoO2 nanoparticles, convenient ion transport channel of two-dimensional MoS2 nanoflakes and efficient charge transfer and cross-linked 3DSG to improve the electrochemical activity and enhance the dynamics of electrons / ions, which is up to 1150.37 F g-1 specific capacitance and maintains 94.6% of the original capacitance after 10,000 cycles. Also, FeS2 nanoflowers in situ loading on 3DSG (FeS2/3DSG) with enhanced the overall performance of the device are fabricated. The asymmetric supercapacitor with the positive electrode of MoS2-MoO2/3DSG and the negative electrode of FeS2/3DSG can work efficiently and stably under the voltage of 1.7 V, and provide energy density of 87.38 Wh kg-1 at the power density of 683.94 Wkg-1, displaying an outstanding application prospect for energy storage.

5.
J Colloid Interface Sci ; 328(2): 257-62, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18922541

RESUMO

The main purpose of this paper is to report the direct removal of trace ionic iodide (I(-)) from acetic acid through porous carbon spheres (PCS) derived from the carbonization of poly(vinylidene chloride). The surface morphology and pore size distribution of the PCS are distinct from activated carbon (AC); thus they possess the peculiar performance of removing ionic iodide from acetic acid. The easy reach of micropores in the PCS was different from that of AC, but similar to that of activated carbon fiber (ACF). The iodide removal process has a strong relation with temperature, which is a typical feature of physical adsorption. The ionic iodide content in acetic acid used in the adsorption experiment was at the parts per billion level, and the factors influencing the adsorption are discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA