Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(18): 8312-8319, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38651966

RESUMO

Due to their maximum atomic use of metal sites, single-atom catalysts (SACs) exhibit excellent catalytic activity in a variety of reactions. Although many techniques have been reported for the production of SACs, the construction of single atoms through a convenient strategy is still challenging. Here, we provide a facile method to prepare nickel SACs by utilizing the inherent confined space between the template and silica walls in template-occupied mesoporous silica KIT-6 (TOK). After the introduction of nickel-containing precursors into the inherent confined space of the TOK by solid-phase grinding, Ni SACs can be produced promptly during calcination. Single Ni atoms create a covalent Ni-O-Si structure in the TOK, as indicated by density functional theory (DFT) calculations and experimental data. This synthetic approach is easy to scale up, and 10 g of sample can be effortlessly synthesized using ball milling. The resultant Ni SACs were applied to the oxygen evolution reaction and exhibited higher catalytic activity and stability than the comparative sample synthesized in the absence of confined space.

2.
Inorg Chem ; 63(3): 1607-1612, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38194295

RESUMO

Solid base catalysts are widely used in the chemical industry owing to their advantages of environmental friendliness and easy separation. However, their application is limited by basic site aggregation and poor stability. In this study, we report the preparation of magnesium (Mg) single-atom catalysts with high activity and stability by a sublimation-trapping strategy. The Mg net was sublimated as Mg vapor at 620 °C, subsequently transported through argon, and finally trapped on the defects of nitrogen-doped carbon derived from metal-organic framework ZIF-8, producing Mg1/NC. Because of the atomically dispersed Mg sites, the obtained Mg1/NC exhibits high catalytic activity and stability for Knoevenagel condensation of benzaldehyde with malononitrile, which is a typical base-catalyzed reaction. The Mg1/NC catalyst achieves a high efficiency with a turnover frequency of 49.6 h-1, which is much better than that of the traditional counterpart MgO/NC (7.7 h-1). In particular, the activity of Mg1/NC shows no decrease after five catalytic cycles, while that of MgO/NC declines due to the instability of basic sites.

3.
ACS Nano ; 17(5): 5025-5032, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825801

RESUMO

Single-atom catalysts (SACs) show expressively enhanced activity toward diverse reactions due to maximized atomic utilization of metal sites, while their facile, universal, and massive preparation remains a pronounced challenge. Here we report a facile strategy for the preparation of SACs by use of the inherent confined space between the template and silica walls in template-occupied mesoporous silica SBA-15 (TOS). Different transition metal precursors can be introduced into the confined space readily by grinding, and during succeeding calcination single atoms are constructed in the form of M-O-Si (M = Cu, Co, Ni, and Zn). In addition to the generality, the present strategy is easy to scale up and can allow the synthesis of 10 g of SACs in one pot through ball milling. The Cu SAC has been applied for CO2 cycloaddition of epichlorohydrin, and the activity is obviously higher than the counterpart prepared without confined space and various reported Cu-containing catalysts.

4.
Angew Chem Int Ed Engl ; 61(52): e202215157, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36333269

RESUMO

Solid superbases can catalyze diverse reactions under mild conditions, while they suffer from aggregation of basic sites and poor stability during recycling. Here we report a new generation of solid superbases derived from K single atoms (SAs) prepared by a tandem redox strategy. The initial redox reaction takes place between base precursor KNO3 and graphene support, producing K2 O at 400 °C. Further increasing the temperature to 800 °C, the graphene reduces K2 O to K anchored by its vacancies, leading to the generation of K SAs (denoted as K1 /G). The source of basicity in the K1 /G is K SAs, and neighboring single atoms (NSAs) possess superbasicity, which is different from conventional basicity originated from oxygen and nitrogen atoms. Due to the superbasicity as well as high dispersion and anchoring of basic sites, the K1 /G shows excellent catalytic activity and stability in transesterification reaction, which is much superior to the reported catalysts.

5.
ACS Appl Mater Interfaces ; 14(6): 8058-8065, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107005

RESUMO

Solid strong bases with an ordered pore structure (OPS-SSBs) have attracted much attention because of their high catalytic activity and shape selectivity as heterogeneous catalysts in various reactions. Nevertheless, high temperatures are required to fabricate OPS-SSBs by using traditional methods. Herein, we report for the first time that the coordination solvents affect basicity generation in metal-organic frameworks (MOFs) greatly and that strong basicity can be formed at comparatively low temperatures. A typical MOF, MIL-53, was employed, and three different solvents, namely, water, methanol, and N,N-dimethylformamide (DMF), were coordinated, respectively, by means of solvent exchange. Thermogravimetry-mass spectrometer analysis shows that the conversion temperature of base precursor KNO3 is quite different on MIL-53 coordinated with different solvents. The conversion of KNO3 to basic sites takes place at 350, 300, and 250 °C on MIL-53 coordinated with water, methanol, and DMF, respectively. It is fascinating to observe the generation temperature of strongly basic sites at 250 °C, which is noticeably lower than that on various supports, such as mesoporous silica SBA-15 (600 °C), zeolite Y (700 °C), and metal oxide ZrO2 (730 °C). This is due to the redox interaction between coordination solvents and KNO3, leading to a significant decrease in the temperature for KNO3 conversion. Consequently, OPS-SSBs were prepared successfully with an ordered pore structure and strong basicity. The obtained OPS-SSBs show good shape selectivity in Knoevenagel condensation of aromatic aldehydes with different active methylene compounds. Moreover, these solid bases are highly active in the synthesis of dimethyl carbonate through transesterification reaction. This work might open up a new avenue for the fabrication of various functional materials at low temperatures through redox interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA