Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 368: 170-183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382811

RESUMO

Due to the blood-brain barrier (BBB), the application of chemical drugs for glioblastoma treatment is severely limited. Recently, exosomes have been widely applied for drug delivery to the brain. However, the differences in brain targeting efficiency among exosomes derived from different cell sources, as well as the premature drug leakage during circulation, still limit the therapeutic efficacy. Here, we designed a functional oligopeptide-modified exosome loaded with doxorubicin (Pep2-Exos-DOX) for glioblastoma treatment. BV2 mouse microglial cell line was selected as the exosome source due to the favorable BBB penetration. To avoid drug release in the circulation, a redox-response oligopeptide was designed for incorporation into the membranes of exosomes to lock the drug during circulation. The enrichment of the drug in glioblastoma was confirmed. Pharmacodynamic evaluation showed Pep2-Exos-DOX possessed significant anti-cancer activity against glioblastoma as well as relative biosafety. This exosome-based drug delivery system modified with redox-response oligopeptides provides us a novel strategy for brain diseases treatment.


Assuntos
Neoplasias Encefálicas , Exossomos , Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Exossomos/metabolismo , Neoplasias Encefálicas/metabolismo , Doxorrubicina , Oligopeptídeos/metabolismo
2.
Front Pharmacol ; 12: 636213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867987

RESUMO

Resveratrol (RSV), a health-promoting natural product, has been shown to affect various cellular processes in tumor cells. However, the specific protein targets of RSV and the mechanism of action (MOA) of its anticancer effect remain elusive. In this study, the pharmacological activity of RSV was first evaluated in A549 cells, and the results showed that RSV significantly inhibited A549 cell migration but did not affect cell viability. To elucidate the underlying mechanism, a quantitative chemical proteomics approach was employed to identify the protein targets of RSV. A total of 38 target proteins were identified, and proteomic analysis showed that the targets were mainly involved in cytoskeletal remodeling and EMT, which were verified by subsequent in vitro and in vivo assays. In conclusion, RSV inhibits A549 cell migration by binding to multiple targets to regulate cytoskeletal remodeling and suppress EMT.

3.
Mater Sci Eng C Mater Biol Appl ; 117: 111261, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919628

RESUMO

Peptide-drug conjugate (PDC) is a promising prodrug in drug delivery systems. To fabricate nanostructures with proper molecular design which can self-assemble to spherical morphologies is very important for PDC chemotherapy. In this study, a novel PDC (PDC-DOX2), in which two doxorubicin (DOX) molecules are conjugated onto a short peptide (KIGLFRWR) with self-assembly function, was designed and synthesized. PDC-DOX2 with self-assembly properties forms a spherical structure under hydrophobic interaction in water. Hyaluronic acid (HA) was then coated on PDC-DOX2 micelles to form a HA-shelled, peptide-doxorubicin conjugate-cored nanomedicine (HA@PDC-DOX2). The amount of HA can regulate the particle size and stabilization of HA@PDC-DOX2. In addition, HA can actively enhance the targeting effects of PDC-DOX2 micelles since it can interact with overexpressed receptors in cancer cells. The core-shell structured HA@PDC-DOX2 nanomedicine showed significantly enhanced potency against hepatocellular carcinoma compared to PDC-DOX2 micelles as well as free DOX. In this work, a novel PDC which can self-assemble to spherical morphologies and a core-shell structure HA@PDC-DOX2 nanomedicine are designed and prepared. It provides a convenient strategy for the size control of PDC assemblies and constructs effective PDC-based drug delivery systems for cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanomedicina , Peptídeos , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Ácido Hialurônico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Micelas , Peptídeos/uso terapêutico
4.
Theranostics ; 10(18): 8162-8178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724464

RESUMO

Rationale: Both spatial accuracy and temporal persistence are crucial in drug delivery, especially for anti-tumor intravenous nanomedicines, which have limited persistence due to their small particle sizes and easy removal from tumors. The present study takes advantage of morphological transformation strategy to regulate intravenous nanomedicines to display different sizes in different areas, achieving high efficient enrichment and long retention in lesions. Methods: We designed and synthesized functional doxorubicin-peptide conjugate nanoparticles (FDPC-NPs) consisting of self-assembled doxorubicin-peptide conjugates (DPCs) and an acidic-responsive shielding layer named the functional polylysine graft (FPG), which can regulate the assembly morphology of the DPCs from spherical DPC nanoparticles (DPC-NPs) to DPC-nanofibers (DPC-NFs) by preventing the assembly force from π-π stacking and hydrogen bond between the DPC-NPs. The morphology transformation and particle changes of FDPC-NPs in different environments were determined with DLS, TEM and SEM. We used FRET to explore the enhanced retention effect of FDPC-NPs in tumor site in vivo. HPLC-MS/MS analytical method was established to analyze the biodistribution of FDPC-NPs in H22 hepatoma xenograft mouse model. Finally, the antitumor effect and safety of FDPC-NPs was evaluated. Results: The FDPC-NPs were stable in blood circulation and responsively self-assembled into DPC-NFs when the FDPC-NPs underwent the acid-sensitive separation of the shielding layer in a mildly acidic microenvironment. The FDPC-NPs maintained a uniform spherical size of 80 nm and exhibited good morphological stability in neutral aqueous solution (pH 7.4) but aggregated into a long necklace-like chain structure or a crosslinked fiber structure over time in a weakly acidic solution (pH 6.5). These acidity-triggered transformable FDPC-NPs prolonged the accumulation in tumor tissue for more than 5 days after a single injection and improved the relative uptake rate of doxorubicin in tumors 31-fold. As a result, FDPC-NPs exhibited a preferable anti-tumor efficacy and a reduced side effect in vivo compared with free DOX solution and DOX liposomes. Conclusions: Morphology-transformable FDPC-NPs represent a promising therapeutic approach for prolonging the residence time of drugs at the target site to reduce side effect and enhance therapeutic efficacy. Our studies provide a new and simple idea for the design of long-term delivery systems for intravenous chemotherapeutic drugs.


Assuntos
Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/farmacocinética , Animais , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/patologia , Tamanho da Partícula , Peptídeos/administração & dosagem , Peptídeos/química , Polilisina/química , Espectrometria de Massas em Tandem , Distribuição Tecidual
5.
Signal Transduct Target Ther ; 5(1): 72, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32435053

RESUMO

Natural products are an important source of new drugs for the treatment of various diseases. However, developing natural product-based new medicines through random moiety modification is a lengthy and costly process, due in part to the difficulties associated with comprehensively understanding the mechanism of action and the side effects. Identifying the protein targets of natural products is an effective strategy, but most medicines interact with multiple protein targets, which complicate this process. In recent years, an increasing number of researchers have begun to screen the target proteins of natural products with chemical proteomics approaches, which can provide a more comprehensive array of the protein targets of active small molecules in an unbiased manner. Typically, chemical proteomics experiments for target identification consist of two key steps: (1) chemical probe design and synthesis and (2) target fishing and identification. In recent decades, five different types of chemical proteomic probes and their respective target fishing methods have been developed to screen targets of molecules with different structures, and a variety of protein identification approaches have been invented. Presently, we will classify these chemical proteomics approaches, the application scopes and characteristics of the different types of chemical probes, the different protein identification methods, and the advantages and disadvantages of these strategies.


Assuntos
Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Proteínas/metabolismo , Proteômica , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA