RESUMO
Intermittent theta-burst stimulation (iTBS) is emerging as a noninvasive therapeutic strategy for Alzheimer's disease (AD). Recent advances highlighted a new accelerated iTBS (aiTBS) protocol, consisting of multiple sessions per day and higher overall pulse doses, in brain modulation. To examine the possibility of applying the aiTBS in treating AD patients, we enrolled 45 patients in AD at early clinical stages, and they were randomly assigned to either receive real or sham aiTBS. Neuropsychological scores were evaluated before and after treatment. Moreover, we detected cortical excitability and oscillatory activity changes in AD, by the single-pulse TMS in combination with EEG (TMS-EEG). Real stimulation showed markedly better performances in the group average of Auditory Verbal Learning Test scores compared to baseline. TMS-EEG revealed that aiTBS has reinforced this memory-related cortical mechanism by increasing cortical excitability and beta oscillatory activity underlying TMS target. We also found an enhancement of local natural frequency after aiTBS treatment. The novel findings implicated that high-dose aiTBS targeting left DLPFC is rapid-acting, safe, and tolerable in AD patients. Furthermore, TMS-related increase of specific neural oscillation elucidates the mechanisms of the AD cognitive impairment ameliorated by aiTBS.
Assuntos
Doença de Alzheimer , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Doença de Alzheimer/terapia , Córtex Pré-Frontal/fisiologia , Encéfalo , Córtex Pré-Frontal DorsolateralRESUMO
Repetitive transcranial magnetic stimulation (rTMS) and cognitive training for patients with Alzheimer's disease (AD) can change functional connectivity (FC) within gray matter (GM). However, the role of white matter (WM) and changes of GM-WM FC under these therapies are still unclear. To clarify this problem, we applied 40 Hz rTMS over angular gyrus (AG) concurrent with cognitive training to 15 mild-moderate AD patients and analyzed the resting-state functional magnetic resonance imaging before and after treatment. Through AG-based FC analysis, corona radiata and superior longitudinal fasciculus (SLF) were identified as activated WM tracts. Compared with the GM results with AG as seed, more GM regions were found with activated WM tracts as seeds. The averaged FC, fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) of the above GM regions had stronger clinical correlations (r/P = 0.363/0.048 vs 0.299/0.108, 0.351/0.057 vs 0.267/0.153, 0.420/0.021 vs 0.408/0.025, for FC/fALFF/ReHo, respectively) and better classification performance to distinguish pre-/post-treatment groups (AUC = 0.91 vs 0.88, 0.65 vs 0.63, 0.87 vs 0.82, for FC/fALFF/ReHo, respectively). Our results indicated that rTMS concurrent with cognitive training could rewire brain network by enhancing GM-WM FC in AD, and corona radiata and SLF played an important role in this process.
Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Substância Cinzenta/patologia , Substância Branca/patologia , Estimulação Magnética Transcraniana , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Treino Cognitivo , Imageamento por Ressonância Magnética/métodos , EncéfaloRESUMO
The activation capacity of molecular oxygen is an important indicator to evaluate the photocatalytic efficiency of photocatalysts. In this paper, WS2 nanosheet was deposited on hyper-crosslinked CTF-1-G (obtained by molecular expansion from covalent triazine framework CTF-1) to form a C-GW heterojunction, which promoted the photodegradation of pollutants and the activation of molecular oxygen. This novel C-GW heterojunction exhibited excellent degradation property for organic pollutants (tetracycline (TC), rhodamine B (RhB)) and activating molecular oxygen under visible light irradiation. Among them, C-GW15 could degrade 98% of 20 ppm TC in 60 min and 99% of 30 ppm RhB in 30 min, and it had the highest hydrogen generation rate and hydrogen production amount in 4 hours, which were 8.74 mmol h-1 g-1 and 34.94 mmol g-1, respectively. Meanwhile, C-GW15 had the strongest 3,3',5,5'-tetramethylbenzidine oxidation capacity and could generate 1.83 µmol of ËO2- in 60 min and the production of H2O2 was 20.8 µmol L-1 in 40 min. The results of this study clearly indicated that the combination of WS2 and CTF-1-G can enhance the visible light absorption capacity and photogenerated carrier separation efficiency, thus promoting the photocatalytic performance. Finally, a Z-type photocatalytic mechanism was proposed based on radical capture, molecular oxygen activation experiments and electron spin resonance analysis. These findings will extend the fundamental understanding of the Z-type photocatalytic mechanism and provide new opportunities for the rational design of CTF heterojunctions for the treatment of environmental pollution and clean energy conversion.
RESUMO
The interaction between glioma stem cells (GSCs) and mesenchymal stem cells (MSCs) in the glioma microenvironment is considered to be an important factor in promoting tumor progression, but the mechanism is still not fully elucidated. To further elucidate the interaction between GSCs and MSCs, two 3D-bioprinted tumor models (low-temperature molding and coaxial bioprinting) were used to simulate the tumor growth microenvironment. Cell fusion between GSCs and MSCs was found by the method of Cre-LoxP switch gene and RFP/GFP dual-color fluorescence tracing. The fused cells coexpressed biomarkers of GSCs and MSCs, showing stronger proliferation, cloning, and invasion abilities than GSCs and MSCs. In addition, the fused cells have stronger tumorigenic properties in nude mice, showing the pathological features of malignant tumors. In conclusion, GSCs and MSCs undergo cell fusion in 3D-bioprinted models, and the fused cells have a higher degree of malignancy than parental cells, which promotes the progression of glioma.
Assuntos
Bioimpressão , Neoplasias Encefálicas , Glioma , Células-Tronco Mesenquimais , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glioma/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Microambiente TumoralRESUMO
Glucose-sensing photonic crystals are promising for the significant advance of continuous glucose monitoring systems due to the naked-eye colorimetric readouts and noninvasive detection of diabetes, but the long response time hampers their practical applications. Here, for the first time probes of photonic nanochains (PNCs) are demonstrated that are capable of continuously and reversibly sensing glucose concentration ([glucose]) variation within seconds by color change without power consumption, much faster by 2-3 orders of magnitude than previous ones. They are comprised of 1D equidistant arrays of magnetic nanoparticles enveloped by tens-of-nanometer-thick phenylboronic acid-functionalized hydrogels, and fabricated by developing selective concentration polymerization of monomers in binary microheterogeneous solvents of dimethyl sulfoxide (DMSO) and H2 O. In this process, both 3-acrylamido phenylboronic acid (AAPBA) and N-2-hydroxyethyl acrylamide (HEAAm) are preferentially dissolved in the small volume of free DMSO concentrated in the vicinity of poly vinylpyrrolidone coated Fe3 O4 colloidal nanoparticles (Fe3 O4 @PVP), yielding Fe3 O4 @PVP@poly(AAPBA-co-HEAAm) PNCs after UV irradiation under magnetic field. The PNCs in phosphate buffered solution have a wavelength-shift range up to 130 nm when [glucose] changes from 0 to 20 × 10-3 m. The results can facilitate real-time glucose monitoring and provide an alternative to produce functional organic-inorganic nanostructures.
Assuntos
Automonitorização da Glicemia , Glicemia , Colorimetria/métodos , Glucose/química , Hidrogéis/químicaRESUMO
Salvia miltiorrhiza has been comprehensively studied as a medicinal model plant. However, research progress on this species is significantly hindered by its unavailable genome sequences and limited number of expressed sequence tags in the National Center for Biotechnology Information database. Thus, a transcript database must be developed to assist researchers to browse, search, and align sequences for gene cloning and functional analysis in S. miltiorrhiza. In this study, the Danshen Transcriptional Resource Database (DsTRD) was built using 76,531 transcribed sequences assembled from 12 RNA-Seq transcriptomes. Among these 12 RNA-seq data, ten were downloaded from NCBI database. The remaining two were enced on the Hiseq2000 platform using the stem and hairy-root of S. miltiorrhiza. The transcripts were annotated as protein-coding RNAs, long non-coding RNAs, microRNA precursors, and phased secondary small-interfering RNA genes through several bioinformatics methods. The tissue expression levels for each transcript were also calculated and presented in terms of RNA-Seq data. Overall, DsTRD facilitates browsing and searching for sequences and functional annotations of S. miltiorrhiza. DsTRD is freely available at http://bi.sky.zstu.edu.cn/DsTRD/home.php.