Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 451: 139507, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696940

RESUMO

In the domain of infant nutrition, optimizing the absorption of crucial nutrients such as vitamin D3 (VD3) is paramount. This study harnessed dynamic-high-pressure microfluidization (DHPM) on soybean protein isolate (SPI) to engineer SPI-VD3 nanoparticles for fortifying yogurt. Characterized by notable binding affinity (Ka = 0.166 × 105 L·mol-1) at 80 MPa and significant surface hydrophobicity (H0 = 3494), these nanoparticles demonstrated promising attributes through molecular simulations. During simulated infant digestion, the 80 MPa DHPM-treated nanoparticles showcased an impressive 74.4% VD3 bioaccessibility, delineating the pivotal roles of hydrophobicity, bioaccessibility, and micellization dynamics. Noteworthy was their traversal through the gastrointestinal tract, illuminating bile salts' crucial function in facilitating VD3 re-encapsulation, thereby mitigating crystallization and augmenting absorption. Moreover, DHPM treatment imparted enhancements in nanoparticle integrity and hydrophobic properties, consequently amplifying VD3 bioavailability. This investigation underscores the potential of SPI-VD3 nanoparticles in bolstering VD3 absorption, thereby furnishing invaluable insights for tailored infant nutrition formulations.


Assuntos
Disponibilidade Biológica , Colecalciferol , Digestão , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Humanos , Colecalciferol/química , Colecalciferol/metabolismo , Lactente , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo
2.
Int J Biol Macromol ; 257(Pt 1): 128652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065454

RESUMO

Pickering high internal phase emulsions (HIPEs) have gained significant attention for various applications within the food industry. Yeast cell protein (YCP), derived from spent brewer's yeast, stands out as a preferred stabilizing agent due to its cost-effectiveness, abundance, and safety profile. However, challenges persist in utilizing YCP, notably its instability under high salt concentration, thermal processing, and proximity to its isoelectric point. This study aimed to enhance YCP's emulsifying properties through glycation with glucose and evaluate its efficacy as a stabilizer for curcumin (CUR)-loaded HIPEs. The results revealed that glycation increased YCP's surface hydrophobicity, exposing hydrophobic groups. This augmentation, along with steric hindrance from grafted glucose molecules, improved emulsifying properties, resulting in a thicker interfacial layer around oil droplets. This fortified interfacial layer, in synergy with steric hindrance, bolstered resistance to pH changes, salt ions, and thermal degradation. Moreover, HIPEs stabilized with glycated YCP exhibited reduced oxidation rates and improved CUR protection. In vitro digestion studies demonstrated enhanced CUR bioaccessibility, attributed to a faster release of fatty acids. This study underscores the efficacy of glycation as a strategic approach to augment the applicability of biomass proteins, exemplified by glycated YCP, in formulating stable and functional HIPEs for diverse food applications.


Assuntos
Curcumina , Emulsões/química , Curcumina/farmacologia , Curcumina/química , Saccharomyces cerevisiae/metabolismo , Reação de Maillard , Glucose , Tamanho da Partícula
3.
Food Chem ; 394: 133537, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749870

RESUMO

Curcumin (CUR) was encapsulated into yeast cells (YCs) through a pH-driven method with a 5.04-fold increase in loading capacity and a 43.63-fold reduction in incubation time compared to the conventional diffusion method. Optimal encapsulation was obtained when the mass ratio of CUR to YCs was 0.1, and the loading capacity and encapsulation efficiency were 8.07% and 80.66%, respectively. Encapsulation of CUR into YCs was confirmed by fluorescence microscopy, differential scanning calorimetry, and thermogravimetric analysis. Fourier transform infrared spectroscopy and X-ray diffraction further demonstrated that the encapsulated CUR was interacted with mannoprotein and ß-glucan of the cell wall network through hydrophobic interaction and hydrogen bond in amorphous state. The in vitro bioaccessibility of YCs-loaded CUR was significantly increased by 6.05-fold. The enhanced encapsulation efficiency and rapid encapsulation process proposed in this study could facilitate YCs-based microcarriers to encapsulate bioactive substances with higher bioaccessibility.


Assuntos
Curcumina , Nanopartículas , Varredura Diferencial de Calorimetria , Curcumina/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Tamanho da Partícula , Saccharomyces cerevisiae , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA