Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2406093, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865651

RESUMO

Aqueous Zn-ion batteries featuring with intrinsic safety and low cost are highly desirable for large-scale energy storage, but the unstable Zn-metal anode resulting from uncontrollable dendrite growth and grievous hydrogen evolution reaction (HER) shortens their cycle life. Herein, a feasible in situ self-reconfiguration strategy is developed to generate triple-gradient poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI)-Zn5(OH)8Cl2·H2O-Sn (PT-ZHC-Sn) artificial layer. The resulting triple-gradient interface consists of the spherical top layer PT with cation confinement and H2O inhibition, the dense intermediate layer ZHC nanosheet with Zn2+ conduction and electron shielding, and the bottom layer Znophilic Sn metal. The well-designed triple-gradient artificial interfacial layer synergistically facilitates rapid Zn2+ diffusion to regulate uniform Zn deposition and accelerates the desolvation process while suppressing HER. Consequently, the PT-ZHC-Sn@Zn symmetric cell achieves an ultralong lifespan over 6500 h at 0.5 mA cm-2 for 0.5 mAh cm-2. Furthermore, a full battery coupling with MnO2 cathode exhibits a 17.2% increase in capacity retention compared with bare Zn anode after 1000 cycles. The in situ self-reconfiguration strategy is also applied to prepare triple-gradient PT-ZHC-In, and the assembled Zn//Cu cell operates steadily for over 8400 h while maintaining Coulombic efficiency of 99.6%. This work paves the way to designing multicomponent gradient interface for stable Zn-metal anodes.

2.
ACS Appl Mater Interfaces ; 16(20): 26460-26467, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713066

RESUMO

Owing to the ionic bond nature of the Pb-I bond, the iodide at the interface of perovskite polycrystalline films was easily lost during the preparation process, resulting in the formation of a large number of iodine vacancy defects. The presence of iodine vacancy defects can cause nonradiative recombination, provide a pathway for iodide migration, and be harmful to the power conversion efficiency (PCE) and stability of organic-inorganic hybrid perovskite solar cells (HPSCs). Here, in order to increase the robustness of iodides at the interface, a strategy to introduce anion binding effects was developed to stabilize the perovskite films. It was demonstrated that the N,N'-diphenylurea (DPU), characterized by high anionic binding constants and a Y-shaped structure, provides a relatively strong hydrogen bond donor site to effectively reduce the iodine loss during film preparation and inhibits iodide migration in the device working condition. As expected, the reduced iodine loss considerably improves the quality of the perovskite films and suppresses nonradiative recombination. The performance of the device after DPU modification was significantly increased, with the PCE rising from 23.65 to 25.01% with huge stability enhancement as well.

3.
Adv Mater ; 36(25): e2400138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402444

RESUMO

Kesterites, Cu2ZnSn(SxSe1- x)4 (CZTSSe), solar cells suffer from severe open-circuit voltage (VOC) loss due to the numerous secondary phases and defects. The prevailing notion attributes this issue to Sn-loss during the selenization. However, this work unveils that, instead of Sn-loss, elemental inhomogeneity caused by Cu-directional diffusion toward Mo(S,Se)2 layer is the critical factor in the formation of secondary phases and defects. This diffusion decreases the Cu/(Zn+Sn) ratio to 53% at the bottom fine-grain layer, increasing the Sn-/Zn-related bulk defects. By suppressing the Cu-directional diffusion with a blocking layer, the crystal quality is effectively improved and the defect density is reduced, leading to a remarkable photovoltaic coversion efficiency (PCE) of 14.9% with a VOC of 576 mV and a certified efficiency of 14.6%. The findings provide insights into element inhomogeneity, holding significant potential to advance the development of CZTSSe solar cells.

4.
Adv Mater ; 36(21): e2313772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402409

RESUMO

Fiber-shaped aqueous zinc-ion batteries (FAZIBs) with intrinsic safety, highcapacity, and superb omnidirectional flexibility hold promise for wearable energy-supply devices. However, the interfacial separation of fiber-shaped electrodes and electrolytes caused by Zinc (Zn) stripping process and severe Zn dendrites occurring at the folded area under bending condition seriously restricts FAZIBs' practical application. Here, an advanced confinement encapsulation strategy is originally reported to construct dual-layer gel electrolyte consisting of high-fluidity polyvinyl alcohol-Zn acetate inner layer and high-strength Zn alginate outer layer for fiber-shaped Zn anode. Benefiting from the synergistic effect of inner-outer gel electrolyte and the formation of solid electrolyte interphase on Zn anode surface by lysine additive, the resulting fiber-shaped Zn-Zn symmetric cell delivers long cycling life over 800 h at 1 mA cm-2 with dynamic bending frequency of 0.1 Hz. The finite element simulation further confirms that dual-layer gel electrolyte can effectively suppress the interfacial separation arising from the Zn stripping and bending process. More importantly, a robust twisted fiber-shaped Zn/zinc hexacyanoferrate battery based on dual-layer gel electrolyte is successfully assembled, achieving a remarkable capacity retention of 97.7% after bending 500 cycles. Therefore, such novel dual-layer gel electrolyte design paves the way for the development of long-life fiber-shaped aqueous metal batteries.

5.
Adv Mater ; 36(19): e2311082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288858

RESUMO

Hydrogel electrolytes (HEs), characterized by intrinsic safety, mechanical stability, and biocompatibility, can promote the development of flexible aqueous zinc-ion batteries (FAZIBs). However, current FAZIB technology is severely restricted by the uncontrollable dendrite growth arising from undesirable reactions between the HEs with sluggish ionic conductivity and Zn metal. To overcome this challenge, this work proposes a molecular engineering strategy, which involves the introduction of oxygen-rich poly(urea-urethane) (OR-PUU) into polyacrylamide (PAM)-based HEs. The OR-PUU/PAM HEs facilitate rapid ion transfer through their ionic hopping migration mechanism, resulting in uniform and orderly Zn2+ deposition. The abundant polar groups on the OR-PUU molecules in OR-PUU/PAM HEs break the inherent H-bond network, tune the solvation structure of hydrated Zn2+, and inhibit the occurrence of side reactions. Moreover, the interaction of hierarchical H-bonds in the OR-PUU/PAM HEs endows them with self-healability, enabling in situ repair of cracks induced by plating/stripping. Consequently, Zn symmetric cells incorporating the novel OR-PUU/PAM HEs exhibit a long cycling life of 2000 h. The resulting Zn-MnO2 battery displays a low capacity decay rate of 0.009% over 2000 cycles at 2000 mA g-1. Overall, this work provides valuable insights to facilitate the realization of dendrite-free Zn-metal anodes through the molecular engineering of HEs.

6.
Small ; 20(19): e2308266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100155

RESUMO

Developing well-crystallized light-absorbing layers remains a formidable challenge in the progression of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. A critical aspect of optimizing CZTSSe lies in accurately governing the high-temperature selenization reaction. This process is intricate and demanding, with underlying mechanisms requiring further comprehension. This study introduces a precursor microstructure-guided hetero-nucleation regulation strategy for high-quality CZTSSe absorbers and well-performing solar cells. The alcoholysis of 2-methoxyethanol (MOE) and the generation of high gas-producing micelles by adding hydrogen chloride (HCl) as a proton additive into the precursor solution are successfully suppressed. This tailored modification of solution components reduces the emission of volatiles during baking, yielding a compact and dense precursor microstructure. The reduced-roughness surface nurtures the formation of larger CZTSSe nuclei, accelerating the ensuing Ostwald ripening process. Ultimately, CZTSSe absorbers with enhanced crystallinity and diminished defects are fabricated, attaining an impressive 14.01% active-area power conversion efficiency. The findings elucidate the influence of precursor microstructure on the selenization reaction process, paving a route for fabricating high-quality kesterite CZTSSe films and high-efficiency solar cells.

7.
Adv Mater ; 36(13): e2310962, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111378

RESUMO

Perovskite solar cells (PSCs) have attracted extensive attention due to their higher power conversion efficiency (PCE) and simple fabrication process. However, the open-circuit voltage (VOC) loss remains a significant impediment to enhance device performance. Here, a facile strategy to boost the VOC to 95.5% of the Shockley-Queisser (S-Q) limit through the introduction of a universal multifunctional polymer additive is demonstrated. This additive effectively passivates the cation and anion defects simultaneously, thereby leading to the transformation from the strong n-type to weak n-type of perovskite films. Benefitting from the energy level alignment and the suppression of bulk non-radiative recombination, the quasi-Fermi level splitting (QFLS) is enhanced.  Consequently, the champion devices with 1.59 eV-based perovskite reach the highest VOC value of 1.24 V and a PCE of 23.86%. Furthermore, this strategy boosts the VOC by at least 0.07 V across five different perovskite systems, a PCE of 25.04% is achieved for 1.57 eV-based PSCs, and the corresponding module (14 cm2) also obtained a high PCE of 21.95%. This work provides an effective and universal strategy to promote the VOC approach to the detailed balance theoretical limit.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38039069

RESUMO

Aqueous Zn-ion batteries offer the advantages of greater security and lower fabrication costs over their lithium-ion counterparts. However, their further advancement and practical application are hindered by the drastic decay in their performance due to the uncontrollable dendrite growth on Zn anodes. In this study, we fabricated a versatile three-dimensional (3D) interfacial layer (3D PVDF-Zn(TFO)2 (PVDF: poly(vinylidene fluoride); TFO: trifluoromethanesulfonate), which simultaneously formed porous Zn-metal anodes (PZn) with an enhanced (002) texture, via a in situ etching scheme. The 3D PVDF-Zn(TFO)2@PZn symmetrical cells leverage the advantages of surface coating and 3D porous architectures to yield extra-long cyclic lifetimes of over 5300 h (0.1 mA cm-2). The fabricated anodes were found to be compatible with MnO2 cathodes, and the resulting full batteries delivered an outstanding capacity of 336 mAh g-1 at 0.1 A g-1 and exhibited impressive long-term reversibility with a capacity retention of 78.7% for 2000 cycles. The proposed coating strategy is viable for developing porous structures with cutting-edge designs and for textured surface engineering.

9.
ACS Appl Mater Interfaces ; 15(47): 54886-54897, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963338

RESUMO

Emerging biocomposites with excellent heat dissipation capabilities and inherent sustainability are urgently needed to address the cooling issues of modern electronics and growing environmental concerns. However, the moisture stability, mechanical performance, thermal conductivity, and even flame retardancy of biomass-based materials are generally insufficient for practical thermal management applications. Herein, we present a high-performance graphene biocomposite consisting of carboxylated cellulose nanofibers and graphene nanosheets through an evaporation-induced self-assembly and subsequent Fe3+ cross-linking strategy. The Fe3+ coordination plays a critical role in stabilizing the material structure, thereby improving the mechanical strength and water stability of the biocomposite films, and its effect is revealed by density functional theory calculations. The hierarchical structure of the biocomposite films also leads to a high in-plane thermal conductivity of 42.5 W m-1 K-1, enabling a superior heat transfer performance. Furthermore, the resultant biocomposite films exhibit outstanding Joule heating performance with a fast thermal response and long-term stability, improved thermal stability, and flame retardancy. Therefore, such a general strategy and the desired overall properties of the biocomposite films offer wide application prospects for functional and safe thermal management.

10.
Sci Adv ; 9(21): eadg0087, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235654

RESUMO

All-inorganic CsPbI3 perovskite solar cells (PSCs) with efficiencies exceeding 20% are ideal candidates for application in large-scale tandem solar cells. However, there are still two major obstacles hindering their scale-up: (i) the inhomogeneous solid-state synthesis process and (ii) the inferior stability of the photoactive CsPbI3 black phase. Here, we have used a thermally stable ionic liquid, bis(triphenylphosphine)iminium bis(trifluoromethylsulfonyl)imide ([PPN][TFSI]), to retard the high-temperature solid-state reaction between Cs4PbI6 and DMAPbI3 [dimethylammonium (DMA)], which enables the preparation of high-quality and large-area CsPbI3 films in the air. Because of the strong Pb-O contacts, [PPN][TFSI] increases the formation energy of superficial vacancies and prevents the undesired phase degradation of CsPbI3. The resulting PSCs attained a power conversion efficiency (PCE) of 20.64% (certified 19.69%) with long-term operational stability over 1000 hours. A record efficiency of 16.89% for an all-inorganic perovskite solar module was achieved, with an active area of 28.17 cm2.

11.
Angew Chem Int Ed Engl ; 62(18): e202301574, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36862048

RESUMO

The spontaneously formed uncoordinated Pb2+ defects usually make the perovskite films demonstrate strong n-type with relatively lower carrier diffusion length and serious non-radiative recombination energy loss. In this work, we adopt different polymerization strategies to construct three-dimensional passivation frameworks in the perovskite layer. Thanks to the strong C≡N⋅⋅⋅Pb coordination bonding and the penetrating passivation structure, the defect state density is obviously reduced, accompanied by a significant increase in the carrier diffusion length. Additionally, the reduction of iodine vacancies also changed the Fermi level of the perovskite layer from strong n-type to weak n-type, which substantially promotes the energy level alignment and carrier injection efficiency. As a result, the optimized device achieved an efficiency exceeded 24 % (the certified efficiency is 24.16 %) with a high open-circuit voltage of 1.194 V, and the corresponding module achieved an efficiency of 21.55 %.

12.
Angew Chem Int Ed Engl ; 62(2): e202213478, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36372778

RESUMO

Metal-cation defects and halogen-anion defects in perovskite films are critical to the efficiency and stability of perovskite solar cells (PSCs). In this work, a random polymer, poly(methyl methacrylate-co-acrylamide) (PMMA-AM), was synthesized to serve as an interfacial passivation layer for synergistically passivating the under-coordinated Pb2+ and anchor the I- of the [PbI6 ]4- octahedron. Additionally, the interfacial PMMA-AM passivation layer cannot be destroyed during the hole transport layer deposition because of its low solubility in chlorobenzene. This passivation leads to an enhancement in the open-circuit voltage from 1.12 to 1.22 V and improved stability in solar cell devices, with the device maintaining 95 % of the initial power conversion efficiency (PCE) over 1000 h of maximum power point tracking. Additionally, a large-area solar cell module was fabricated using this approach, achieving a PCE of 20.64 %.

13.
Polymers (Basel) ; 14(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559761

RESUMO

With the rapid development of the economy and urbanization, the construction of the urban rail transit system has had a great impact on the work, life, and health of residents in buildings along the rail transit line. Thus, it is particularly urgent and necessary to develop base isolation technologies to control and reduce the impact of vibrations of rail transit systems on building structures. High-damping rubber isolation bearings have shown significant effectiveness in the reduction of this impact, and their isolation performance mainly depends on the mechanical and damping energy dissipation characteristics of the high-damping rubber material. This paper aims to investigate the hyper-viscoelastic properties of the high-damping rubber material used for high-damping rubber isolation bearings during the cyclic tension and compression process in the vertical direction. These properties include hyperelastic parameters, viscoelastic coefficients, and the relaxation times of the material. For this purpose, uniaxial cyclic tension and compression tests were conducted. A three-element Maxwell rheological model combining a strain energy density function was proposed for modeling the hyper-viscoelastic behaviors of the materials during the cyclic tension and compression process. Based on the obtained results, an iterative identification procedure was used to determine the constitutive parameters of the material for each loading-unloading cycle. The aforementioned parameters were further expressed as a function of the number of cycles. New insights into hyper-viscoelastic property changes in this high-damping rubber material during the cyclic tension and compression process were gained in this work. These investigations could facilitate the development of computational tools, which would regulate fundamental guidelines for the better controlling and optimization of the isolation performance of the high-damping rubber material used for high-damping rubber isolation bearings, which have a wider perspective of applications in the urban rail transit system.

14.
Adv Sci (Weinh) ; 9(31): e2203596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36068152

RESUMO

Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2 AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+ )-based metal halide MA2 CuCl3 (MA = CH3 NH3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2 CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2 CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2 CuCl3 has a great potential for the single-component indoor lighting and display applications.

15.
Foods ; 11(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954078

RESUMO

ε-Polylysine (ε-PL) is a cationic antimicrobial peptide, which easily forms complexes with food polyanions to weaken its antibacterial activity. A whey protein-ε-PL complex delivery system was found to be able to solve this problem. This study investigated the antimicrobial activity of the complexes and their mechanism against Gram-positive bacteria. The minimal inhibitory concentration of the complexes with different ε-PL contents against Staphylococcus aureus and Bacillus subtilis were 19.53-31.26 and 3.90-7.81 µg/mL, respectively, which were similar to free ε-PL. Furthermore, the whey protein-ε-PL complexes had a strong bactericidal effect on Bacillus subtilis. The inhibition zone diameters of the complexes against Staphylococcus aureus and Bacillus subtilis containing 5000 µg/mL of ε-PL were 14.14 and 16.69 mm, respectively. The results of scanning electron microscopy showed that the complexes could destroy the cell membrane structure in Bacillussubtilis, resulting in holes on the surface, but not in Staphylococcus aureus. The results of molecular dynamics simulation showed that under electrostatic interaction, the complexes captured the phospholipid molecules of the bacterial membrane through the hydrogen bonds. Parts of the ε-PL molecules of the complexes were embedded in the bilayer membrane, and parts of the ε-PL molecules could penetrate the bilayer membrane and enter the bacterial internal environment, forming holes on the surface of the bacteria. The antibacterial results in fresh meat showed that the whey protein-ε-PL complexes could reduce the total mesophilic and Staphylococcus aureus counts. This study on the antibacterial activity mechanism of whey protein-ε-PL complexes could provide a reference for the application of ε-PL in protein food matrices.

16.
Nat Commun ; 13(1): 4417, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906237

RESUMO

Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm2 active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices.

17.
Antioxidants (Basel) ; 11(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35883858

RESUMO

Proanthocyanidins (PAs) are considered to be effective natural byproduct and bioactive antioxidants. However, few studies have focused on their mode of action pathways. In this study, reactive oxygen species (ROS), oxidative stress indices, real-time PCR, Western blotting, confocal microscopy, and molecular docking were used to investigate the protective effect of purified kiwi leaves PAs (PKLPs) on Caco-2 cells' oxidative stress mechanisms. The results confirmed that pre-treatment with PKLPs significantly reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the Caco-2 cells. The PKLPs upregulated the expression of antioxidative enzymes (GSH-px, CAT, T-SOD) and the relative mRNA (Nrf, HO-1, SOD-1, CAT) of the nuclear factor erythroid 2-related factor (Nrf2) signaling pathway. The protein-expressing level of the Nrf2 and its relative protein (NQO-1, HO-1, SOD-1) were significantly increased (p < 0.05) in the PKLPs pre-treatment group compared to the model group. In conclusion, the novelty of this study is that it explains how PKLPs' efficacy on the Nrf2-ARE signaling pathway, in protecting vital cells from oxidative stress, could be used for cleaner production.

18.
J Colloid Interface Sci ; 620: 127-134, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421749

RESUMO

The mild electrolyte working environment of rechargeable aqueous Zn-ion batteries (AZIBs) features its promising characteristic and potential application for large-scale energy storage system. However, the poor cycling stability significantly hinders the broad application of AZIBs due to the complex electrochemical conversion reactions during charge-discharge process. Herein, we propose a strategy to improve the electrochemical performance of AZIB by enhancing the successive electrochemical conversion reactions. With a rational design of electrode, an even homogeneous electric field can be achieved in the cathode side, resulting to significantly enhanced efficiency of successive electrochemical conversion reactions. Charge storage mechanism studies reveal that the reversibility behaviors of byproducts alkaline zinc sulfate (ZHS) can dramatically determine the H+/Zn2+ de/intercalation process, and a high reversibility characteristic ensures the facilitated electrochemical kinetics. As expected, the resultant AZIB possesses outstanding electrochemical performance with a high specific capacity of 425.08 mAh⋅g-1 at 0.1 A⋅g-1, an excellent rate capacity of about 60% (246.6 mAh⋅g-1 at 1 A⋅g-1) and superior cycling stability of 93.7% after 3000 cycles (at 3 A⋅g-1). This effective strategy and thinking proposed here may open a new avenue for the development of high-performing AZIBs.

19.
ACS Appl Mater Interfaces ; 14(10): 12442-12449, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234437

RESUMO

The existence of the PbI2 phase in the perovskite film is normally inevitable because of the easy sublimation of the organic component during the crystallization process under a relatively high annealing temperature. However, excess PbI2 will cause significant degradation on open current voltage (VOC) and fill factor (FF) under continuous illumination. Here, we developed a pressure-assisted space-confinement (PASC) method to enhance the phase purity of the perovskite film fabricated by the two-step spin-coating method. It was found that high pressure is more conductive to lower the sublimation rate of the organic units, and the space confinement is more favorable for the Ostwald ripening. The combination of them can easily fabricate high-quality perovskite films with large crystal grains and eliminated PbI2 remnants. As expected, the efficiency of the solar cell was improved from 20.38 to 22.26%; more importantly, the operational stability of the corresponding device had a pronounced improvement, which remains over 85% of its initial efficiency after 500 h maximum power point tracking measurement. Based on this PASC method, a prototype PSC module (PSM) with an active area of 14 cm2 was also fabricated reaching an efficiency over 17%.

20.
J Dairy Sci ; 105(5): 3746-3757, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35282919

RESUMO

ε-Polylysine (ε-PL) is a natural preservative of antimicrobial peptides with broad spectrum and high antibacterial properties. The electrostatic complex delivery system formed by ε-PL and whey protein can be used to maintain the stability of ε-PL and solve the problem of limited application of protein-based food. This work aimed to study the interaction between ε-PL and whey protein by multiple characterization methods. The spectroscopy results showed static quenching type and new stretching of C=O for ε-PL-whey protein complexes. Microstructure studies showed that the combination of ε-PL and whey protein made the structure of the complexes become rough and dense. The interaction between ε-PL and whey protein could improve the stability of the complexes system during storage. Additionally, the interaction affected critical gel temperatures and gel texture properties of complexes with change of whey protein concentration, mass ratio of ε-PL to whey protein, pH value in alkaline solutions, and ion concentration. Overall, this study confirmed the interaction between ε-PL and whey protein, and it will provide a reference for the application of ε-PL in protein food matrix.


Assuntos
Antibacterianos , Polilisina , Animais , Reologia , Eletricidade Estática , Proteínas do Soro do Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA