RESUMO
Vitamin C (VC), due to its chemical properties, can provide more oxygen-containing functional groups such as hydroxyl groups for biochar (BC), which promotes the adsorption of tetracycline on biochar. Therefore, in this study, cow dung biochar (CDBC) was modified with VC and VC-modified CDBC (CDBC-VC) was synthesized. The modified biochar was characterized and related factors, adsorption kinetics, isotherms and adsorption mechanisms were investigated. Adsorption kinetics indicate a fast rate of adsorption. The adsorption isotherms showed that the maximum adsorption capacity was 31.72 mg/g (CDBC) and 50.90 mg/g (CDBC-VC), respectively, and the adsorption process was inhomogeneous with multiple molecular layers and the adsorbent has a higher affinity. Mechanistic studies showed that hydrogen bonding interactions, π-π electron donor-acceptor interactions, hydrophobic interactions, and electrostatic interactions were the key to the adsorption process. The analysis of adsorbent regeneration showed that CDBC-VC had good adsorption performance. CDBC and CDBC-VC showed the best performance in simulated industrial wastewater with removal rates of 78.81% and 93.69%. The adsorption mechanism was comprehensively analyzed using six machine learning models. The extreme gradient boosting model gave the best fit. Analysis of the weights of the input variables for predicting adsorption efficiency showed that the ratio of initial TC concentration to BC dosage (29.8%), specific surface area (23%), isoelectric point (8.8%), and ash content (7.7%) had a significant effect on the predicted results.
Assuntos
Ácido Ascórbico , Carvão Vegetal , Esterco , Tetraciclina , Poluentes Químicos da Água , Purificação da Água , Tetraciclina/química , Tetraciclina/isolamento & purificação , Carvão Vegetal/química , Ácido Ascórbico/química , Esterco/análise , Animais , Adsorção , Bovinos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Cinética , Água/químicaRESUMO
In this study, cow dung biomass was converted into biochar (BC). BC900 was obtained through one-step pyrolysis at 900 °C, while BC700-900 and BC900-700 were obtained via two-step pyrolysis at temperature ranges of 700-900 °C and 900-700 °C, respectively. The primary objective was to investigate the adsorption performance and application value of BCs for tetracycline (TC) in water. The samples underwent characterization using scanning electron microscopy and mapping analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Subsequently, the effects of reaction time, adsorbent dosage, temperature, pH, and ionic strength were analyzed. Based on the fitting results of adsorption kinetics, the pyrolytic BCs exhibited a better fit with the pseudo-secondary kinetic model. The adsorption isotherm indicated monolayer adsorption on the surface of the adsorbents, with maximum adsorption capacities of 158.93 mg/g for BC900-700, 150.15 mg/g for BC700-900, and 142.56 mg/g for BC900, respectively. Furthermore, results from simulated wastewater and regeneration experiments demonstrated that BC900-700 exhibited not only excellent adsorption performance in wastewater but also remarkable regeneration capabilities. The two-step pyrolysis BCs in this study displayed a higher adsorption capacity compared to the one-step pyrolysis BCs in practical applications. These findings provide insights for further exploring the adsorption mechanism and optimizing the process.
Assuntos
Carvão Vegetal , Águas Residuárias , Poluentes Químicos da Água , Adsorção , Pirólise , Água , Poluentes Químicos da Água/química , Tetraciclina , Antibacterianos , Cinética , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The abuse of antibiotics poses a threat to the ecological environment and biological health, and how to effectively reduce the residue of tetracycline (TC) in the environment has attracted much attention. In this study, three types of pristine biochar (BCs: PBC300, PBC500, and PBC700) were prepared using agricultural waste shiitake mushroom bran at different pyrolysis temperatures to remove TC from water. The structure and surface chemistry of the adsorbents were characterized using different analytical techniques such as scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. These changes in physicochemical properties improve the adsorption capacity of BC. The PBC300 and PBC500 conform to the Langmuir isothermal adsorption model, while the PBC700 is more compatible with the Freundlich model. According to the fitting results of the Langmuir isotherm model, the maximum saturated adsorption capacities of PBC300, PBC500 and PBC700 for TC were 7.568 mg/g, 14.994 mg/g and 17.684 mg/g, respectively. The correlation coefficients of the pseudo-second-order kinetic models were 0.9882, 0.9882 and 0.9996, respectively, which could well fit the adsorption process of TC by the three BCs, indicating that chemical adsorption was dominant. With the help of machine learning, the relationship between the physicochemical properties of BC and the adsorption capacity of TC was effectively explored. The random forest model was able to fit the adsorption process of BC on TC better. It is expected that this study will guide the rational application of BC in the treatment of TC wastewater.
Assuntos
Cogumelos Shiitake , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Tetraciclina , AntibacterianosRESUMO
The removal of pesticide residues in soil is a research hotspot. The metolachlor (MET) adsorption by walnut shell biochar (BC) modified with montmorillonite (MBC), illite (IBC), and kaolinite (KBC), as well as the original BC (OBC) was investigated. The characteristics of samples were studied by scanning electron microscopy and mapping analysis, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and chemical stability analysis. The effects of the dosage, ionic strength, and pH, and determined the adsorption kinetics and isotherms for MET with the BCs were analyzed. In addition, response surface methodology regression model analysis was conducted and the adsorption mechanisms were investigated. The results showed that the thermal stability and chemical stability of MBC, IBC, and KBC were higher than those of OBC, and MBC had the greatest stability. The MET adsorption rates of OBC, MBC, IBC, and KBC were 62.15%, 92.47%, 87.97%, and 83.31%, respectively. The kinetic fitting results and adsorption mechanisms showed that the modification of BC with minerals enhanced the physical adsorption of MET. The maximum MET adsorption capacities by OBC, MBC, IBC, and KBC were 39.68 mg g-1, 68.49 mg g-1, 65.79 mg g-1, and 65.36 mg g-1, respectively. Hydrogen bonds, π-π bonds, coordination bonds, and hydrophobic interactions were the key adsorption mechanisms. Therefore, the mineral-modified BCs were characterized by high adsorption rates and stability. This approach can make BC more efficient, with higher performance as a low cost soil amendment.
Assuntos
Juglans , Poluentes Químicos da Água , Acetamidas , Adsorção , Carvão Vegetal/química , Cinética , Minerais , Solo , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/químicaRESUMO
Bioremediation of contaminated soil has received increasing attention, and the effects of antibiotic residues on the soil ecological environment are a current research hotspot. Earthworms are the first choice of soil organisms to indicate the degree of soil pollution, and their detoxification mechanism after antibiotic stress must be further explored. Taking Eisenia fetida as the research object, an antibiotic (tetracycline) stress test was carried out in sterile artificial soil. The stress concentrations were set at 0, 0.3, 3, 30, 300 and 600 mg/kg. The ECO method was used to cultivate microbes in earthworms and soil. The carbon source utilization intensity algorithm developed by our team was used for data statistics, and a factor analysis model was constructed to explore the succession process of microbes of earthworms in vivo and in vitro under tetracycline stress. The results showed that there were four processes in the evolution of microbes under short-term tetracycline stress: at 1-3 days, the microbes in worms played a leading role; at 4-5 days, the microbes in the worms and the soil microbes jointly resisted TET stress; after 6-8 days of stress, the microbes in worms still played the main role, but their role was weakened; and after 9-10 days, soil microbes played a leading role, and tolerant microbes appeared. Under long-term stress, the microbes of earthworms in vivo and in vitro were obvious different, and there may be no regulatory relationship. And the factor analysis model is suitable for the analyse of the changes in microbial communities in vivo and in vitro under TET stress. The research results provide a reference method and model basis for the bioremediation of antibiotic-contaminated soil and the study of earthworm detoxification mechanisms, and help agricultural development.
Assuntos
Microbiota , Oligoquetos , Poluentes do Solo , Animais , Antibacterianos/toxicidade , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Tetraciclina/toxicidadeRESUMO
Objective: To study the effects of α-enolase (ENO1) gene interference expression on proliferation, and cell cycle of follicular granulosa cells from Zi geese. Methods: F1 follicular granulosa cells were primary cultured (mixed culture), which were divided into four groups: ENO1 interference expression group (RNAi), unrelated sequence group (NC), culture group (Control), transfection reagent group (Lip). The apoptosis rate and cell cycle phase of the interference group and the control group were detected by the flow cytometry. Results: ENO1 gene interference expression slowed the proliferation of granulosa cells, increased the apoptosis, and increased the proportion of granulosa cells in G2/M phase. Conclusion: ENO1 gene interference expression could cause G2/M phase arrest in primary cultured goose follicular granulosa cells, induce cell apoptosis and inhibit cell proliferation.
Assuntos
Apoptose , Proliferação de Células , Gansos , Células da Granulosa/citologia , Fosfopiruvato Hidratase , Animais , Pontos de Checagem do Ciclo Celular , Feminino , Fosfopiruvato Hidratase/genética , Interferência de RNARESUMO
Energy band alignments at heterostructure interfaces play key roles in device performance, especially between two-dimensional atomically thin materials. Herein, van der Waals PbI2-MoSe2 heterostructures fabricated by in situ PbI2 deposition on monolayer MoSe2 are comprehensively studied using scanning tunneling microscopy/spectroscopy, atomic force microscopy, photoemission spectroscopy, and Raman and photoluminescence (PL) spectroscopy. PbI2 grows on MoSe2 in a quasi layer-by-layer epitaxial mode. A type-II interface band alignment is proposed between PbI2 and MoSe2 with the conduction band minimum (valence band maximum) located at PbI2 (MoSe2), which is confirmed by first-principles calculations and the existence of interfacial excitons revealed using temperature-dependent PL. Our findings provide a scalable method to fabricate PbI2-MoSe2 heterostructures and new insights into the electronic structures for future device design.
RESUMO
Tramadol is an opioid used as an analgesic for treating moderate or severe pain. The long-term use of tramadol can induce several adverse effects. The toxicological mechanism of tramadol abuse is unclear. Metabolomics is a very useful method for investigating the toxicology of drug abuse. We investigated the impact of chronic tramadol administration on the cerebrum of mice, focusing on the metabolites after tramadol administration. The mice received 20 or 50 mg/kg body weight tramadol dissolved in physiological saline daily for 5 weeks via oral gavage. Compared with the control group, the low dose tramadol group showed seven potential biomarkers, including gamma-hydroxybutyric acid, succinate semialdehyde, and methylmalonic acid, which were either up- or down-regulated. Compared with the control group, the high dose tramadol group showed ten potential biomarkers, including gamma-hydroxybutyric acid, glutamine, and O-phosphorylethanolamine, which were either up- or down-regulated. The up-regulated gamma-hydroxybutyric acid and the down-regulated succinate semialdehyde revealed that the neurotransmitter system was disrupted after tramadol abuse. Compared with the low dose tramadol group, there were twenty-nine potential biomarkers in the high dose tramadol group, mainly related to the pentose phosphate pathway and glycerophospholipid metabolism. In conclusion, metabolomics in the tramadol abuse group demonstrated that long-term tramadol abuse can result in oxidative damage, inflammation, and disruption of the GABA neurotransmitter system, which will help to elucidate the toxicology of tramadol abuse.
Assuntos
Analgésicos Opioides/toxicidade , Cérebro/efeitos dos fármacos , Tramadol/toxicidade , Analgésicos Opioides/administração & dosagem , Animais , Biomarcadores/análise , Cérebro/química , Cérebro/metabolismo , Masculino , Malondialdeído/análise , Metabolômica , Camundongos , Superóxido Dismutase/metabolismo , Tramadol/administração & dosagemRESUMO
van der Waals (vdW) epitaxy offers a promising strategy without lattice and processing constraints to prepare atomically clean and electronically sharp interfaces for fundamental studies and electronic device demonstrations. Herein, PbI2 was thermally deposited at high-vacuum conditions onto CVD-grown monolayer MoS2 flakes in a vdW epitaxial manner to form 3D-2D heterojunctions, which are promising for vdW epitaxial growth of perovskite films. X-ray diffraction, X-ray photoemission spectroscopy, Raman, and atomic force microscopy measurements reveal the structural properties of the high-quality heterojunctions. Photoluminescence (PL) measurements reveal that the PL emissions from the bottom MoS2 flakes are greatly quenched compared to their as-grown counterparts, which can be ascribed to the band alignment-induced distinct interfacial charge-transfer behaviors. Strong interlayer excitons can be detected at the PbI2/MoS2 interface, indicating an effective type II band alignment, which can be further confirmed by ultraviolet photoemission spectroscopy measurements. The results provide a new material platform for the application of the vdW heterojunctions in electronic and optoelectronic devices.